Accurate and Efficient Two-Stage Gun Detection in Video
- URL: http://arxiv.org/abs/2503.06317v1
- Date: Sat, 08 Mar 2025 19:26:23 GMT
- Title: Accurate and Efficient Two-Stage Gun Detection in Video
- Authors: Badhan Chandra Das, M. Hadi Amini, Yanzhao Wu,
- Abstract summary: We propose a novel two-stage gun detection method.<n>In stage 1, we train an image-augmented model to effectively classify Gun'' videos.<n> stage 2 employs an object detection model to locate the exact region of the gun within video frames for videos classified as Gun'' by stage 1.
- Score: 2.6986500640871482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection in videos plays a crucial role in advancing applications such as public safety and anomaly detection. Existing methods have explored different techniques, including CNN, deep learning, and Transformers, for object detection and video classification. However, detecting tiny objects, e.g., guns, in videos remains challenging due to their small scale and varying appearances in complex scenes. Moreover, existing video analysis models for classification or detection often perform poorly in real-world gun detection scenarios due to limited labeled video datasets for training. Thus, developing efficient methods for effectively capturing tiny object features and designing models capable of accurate gun detection in real-world videos is imperative. To address these challenges, we make three original contributions in this paper. First, we conduct an empirical study of several existing video classification and object detection methods to identify guns in videos. Our extensive analysis shows that these methods may not accurately detect guns in videos. Second, we propose a novel two-stage gun detection method. In stage 1, we train an image-augmented model to effectively classify ``Gun'' videos. To make the detection more precise and efficient, stage 2 employs an object detection model to locate the exact region of the gun within video frames for videos classified as ``Gun'' by stage 1. Third, our experimental results demonstrate that the proposed domain-specific method achieves significant performance improvements and enhances efficiency compared with existing techniques. We also discuss challenges and future research directions in gun detection tasks in computer vision.
Related papers
- A Comprehensive Review of Few-shot Action Recognition [64.47305887411275]
Few-shot action recognition aims to address the high cost and impracticality of manually labeling complex and variable video data.
It requires accurately classifying human actions in videos using only a few labeled examples per class.
Numerous approaches have driven significant advancements in few-shot action recognition.
arXiv Detail & Related papers (2024-07-20T03:53:32Z) - CCTV-Gun: Benchmarking Handgun Detection in CCTV Images [59.24281591714385]
Gun violence is a critical security problem, and it is imperative for the computer vision community to develop effective gun detection algorithms.
detecting guns in real-world CCTV images remains a challenging and under-explored task.
We present a benchmark, called textbfCCTV-Gun, which addresses the challenges of detecting handguns in real-world CCTV images.
arXiv Detail & Related papers (2023-03-19T16:17:35Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Weakly Supervised Two-Stage Training Scheme for Deep Video Fight
Detection Model [0.0]
Fight detection in videos is an emerging deep learning application with today's prevalence of surveillance systems and streaming media.
Previous work has largely relied on action recognition techniques to tackle this problem.
We design the fight detection model as a composition of an action-aware feature extractor and an anomaly score generator.
arXiv Detail & Related papers (2022-09-23T08:29:16Z) - Detection of Fights in Videos: A Comparison Study of Anomaly Detection
and Action Recognition [3.8073142980733]
This paper explores the detection of fights in videos as one special type of anomaly detection and as binary action recognition.
We find that the anomaly detection has similar or even better performance than the action recognition.
Experiment results should show that we achieve state-of-the-art performance on three fight detection datasets.
arXiv Detail & Related papers (2022-05-23T15:41:02Z) - Few-Shot Learning for Video Object Detection in a Transfer-Learning
Scheme [70.45901040613015]
We study the new problem of few-shot learning for video object detection.
We employ a transfer-learning framework to effectively train the video object detector on a large number of base-class objects and a few video clips of novel-class objects.
arXiv Detail & Related papers (2021-03-26T20:37:55Z) - Enhanced Few-shot Learning for Intrusion Detection in Railway Video
Surveillance [16.220077781635748]
An enhanced model-agnostic meta-learner is trained using both the original video frames and segmented masks of track area extracted from the video.
Numerical results show that the enhanced meta-learner successfully adapts unseen scene with only few newly collected video frame samples.
arXiv Detail & Related papers (2020-11-09T08:59:15Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
We show how the performance of forgery detectors depends on the presence of artefacts that the human eye can see.
We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality.
arXiv Detail & Related papers (2020-05-20T21:17:43Z) - Gabriella: An Online System for Real-Time Activity Detection in
Untrimmed Security Videos [72.50607929306058]
We propose a real-time online system to perform activity detection on untrimmed security videos.
The proposed method consists of three stages: tubelet extraction, activity classification and online tubelet merging.
We demonstrate the effectiveness of the proposed approach in terms of speed (100 fps) and performance with state-of-the-art results.
arXiv Detail & Related papers (2020-04-23T22:20:10Z) - Sound of Guns: Digital Forensics of Gun Audio Samples meets Artificial
Intelligence [0.7734726150561086]
We introduce a novel technique that requires zero knowledge about the recording setup and is completely agnostic to the relative positions of both the microphone and shooter.
Our solution can identify the category, caliber, and model of the gun, reaching over 90% accuracy on a dataset composed of 3655 samples.
arXiv Detail & Related papers (2020-04-15T09:12:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.