Performant LLM Agentic Framework for Conversational AI
- URL: http://arxiv.org/abs/2503.06410v1
- Date: Sun, 09 Mar 2025 02:58:34 GMT
- Title: Performant LLM Agentic Framework for Conversational AI
- Authors: Alex Casella, Wayne Wang,
- Abstract summary: We introduce the Performant Agentic Framework (PAF), a novel system that assists Large Language Models (LLMs) in selecting appropriate nodes and executing actions in order when traversing complex graphs.<n>PAF combines LLM-based reasoning with a mathematically grounded vector scoring mechanism, achieving both higher accuracy and reduced latency.<n>Experiments demonstrate that PAF significantly outperforms baseline methods, paving the way for scalable, real-time Conversational AI systems in complex business environments.
- Score: 1.6114012813668932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Agentic applications and automation in the Voice AI industry has led to an increased reliance on Large Language Models (LLMs) to navigate graph-based logic workflows composed of nodes and edges. However, existing methods face challenges such as alignment errors in complex workflows and hallucinations caused by excessive context size. To address these limitations, we introduce the Performant Agentic Framework (PAF), a novel system that assists LLMs in selecting appropriate nodes and executing actions in order when traversing complex graphs. PAF combines LLM-based reasoning with a mathematically grounded vector scoring mechanism, achieving both higher accuracy and reduced latency. Our approach dynamically balances strict adherence to predefined paths with flexible node jumps to handle various user inputs efficiently. Experiments demonstrate that PAF significantly outperforms baseline methods, paving the way for scalable, real-time Conversational AI systems in complex business environments.
Related papers
- API Agents vs. GUI Agents: Divergence and Convergence [35.28490346033735]
API- and GUI-based large language models (LLMs) interact with graphical user interfaces in a human-like manner.
This paper systematically analyzes their divergence and potential convergence.
We indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents.
arXiv Detail & Related papers (2025-03-14T04:26:21Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
We propose QLASS (Q-guided Language Agent Stepwise Search), to automatically generate annotations by estimating Q-values.
With the stepwise guidance, we propose a Q-guided generation strategy to enable language agents to better adapt to long-term value.
We empirically demonstrate that QLASS can lead to more effective decision making through qualitative analysis.
arXiv Detail & Related papers (2025-02-04T18:58:31Z) - LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE)
LLMs-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine to generate feedback-akin to textual gradients.
It consistently outperforms existing textual gradient baselines in both accuracy and training cost.
arXiv Detail & Related papers (2025-01-28T03:18:48Z) - AgentPS: Agentic Process Supervision for Multi-modal Content Quality Assurance through Multi-round QA [9.450927573476822]
textitAgentPS is a novel framework that integrates Agentic Process Supervision into MLLMs via multi-round question answering during fine-tuning.<n>textitAgentPS demonstrates significant performance improvements over baseline MLLMs on proprietary TikTok datasets.
arXiv Detail & Related papers (2024-12-15T04:58:00Z) - MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming [10.461509044478278]
MaCTG (MultiAgent Collaborative Thought Graph) is a novel multi-agent framework that employs a dynamic graph structure.
It autonomously assigns agent roles based on programming requirements, dynamically refines task distribution, and systematically verifies and integrates project-level code.
MaCTG significantly reduced operational costs by 89.09% compared to existing multi-agent frameworks.
arXiv Detail & Related papers (2024-10-25T01:52:15Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Procedural Adherence and Interpretability Through Neuro-Symbolic Generative Agents [0.9886108751871757]
We propose a combination of formal logic-based program synthesis and LLM content generation to bring guarantees of procedural adherence and interpretability to generative agent behavior.
To illustrate the benefit of procedural adherence and interpretability, we use Temporal Stream Logic (TSL) to generate an automaton that enforces an interpretable, high-level temporal structure on an agent.
arXiv Detail & Related papers (2024-02-24T21:36:26Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.