Multimodal Programming in Computer Science with Interactive Assistance Powered by Large Language Model
- URL: http://arxiv.org/abs/2503.06552v2
- Date: Wed, 12 Mar 2025 13:42:46 GMT
- Title: Multimodal Programming in Computer Science with Interactive Assistance Powered by Large Language Model
- Authors: Rajan Das Gupta, Md. Tanzib Hosain, M. F. Mridha, Salah Uddin Ahmed,
- Abstract summary: An interactive homework help system based on DeepSeek R1 is developed and first implemented for students enrolled in a large computer science beginning programming course.<n>It wraps student work in a personalized prompt that advances our educational objectives without offering answers straight away.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: LLM chatbot interfaces allow students to get instant, interactive assistance with homework, but doing so carelessly may not advance educational objectives. In this study, an interactive homework help system based on DeepSeek R1 is developed and first implemented for students enrolled in a large computer science beginning programming course. In addition to an assist button in a well-known code editor, our assistant also has a feedback option in our command-line automatic evaluator. It wraps student work in a personalized prompt that advances our educational objectives without offering answers straight away. We have discovered that our assistant can recognize students' conceptual difficulties and provide ideas, plans, and template code in pedagogically appropriate ways. However, among other mistakes, it occasionally incorrectly labels the correct student code as incorrect or encourages students to use correct-but-lesson-inappropriate approaches, which can lead to long and frustrating journeys for the students. After discussing many development and deployment issues, we provide our conclusions and future actions.
Related papers
- MathTutorBench: A Benchmark for Measuring Open-ended Pedagogical Capabilities of LLM Tutors [76.1634959528817]
We present MathTutorBench, an open-source benchmark for holistic tutoring model evaluation.<n>MathTutorBench contains datasets and metrics that broadly cover tutor abilities as defined by learning sciences research in dialog-based teaching.<n>We evaluate a wide set of closed- and open-weight models and find that subject expertise, indicated by solving ability, does not immediately translate to good teaching.
arXiv Detail & Related papers (2025-02-26T08:43:47Z) - WIP: A Unit Testing Framework for Self-Guided Personalized Online Robotics Learning [3.613641107321095]
This paper focuses on creating a system for unit testing while integrating it into the course workflow.
In line with the framework's personalized student-centered approach, this method makes it easier for students to revise, and debug their programming work.
The course workflow updated to include unit tests will strengthen the learning environment and make it more interactive so that students can learn how to program robots in a self-guided fashion.
arXiv Detail & Related papers (2024-05-18T00:56:46Z) - CodeAid: Evaluating a Classroom Deployment of an LLM-based Programming
Assistant that Balances Student and Educator Needs [14.866602418099518]
LLM-powered programming assistant CodeAid delivers technically correct responses without revealing code solutions.
CodeAid answers conceptual questions, generates pseudo-code with line-by-line explanations, and annotates student's incorrect code with fix suggestions.
arXiv Detail & Related papers (2024-01-20T20:14:42Z) - Exploring the Potential of Large Language Models to Generate Formative
Programming Feedback [0.5371337604556311]
We explore the potential of large language models (LLMs) for computing educators and learners.
To achieve these goals, we used students' programming sequences from a dataset gathered within a CS1 course as input for ChatGPT.
Results show that ChatGPT performs reasonably well for some of the introductory programming tasks and student errors.
However, educators should provide guidance on how to use the provided feedback, as it can contain misleading information for novices.
arXiv Detail & Related papers (2023-08-31T15:22:11Z) - CodeHelp: Using Large Language Models with Guardrails for Scalable
Support in Programming Classes [2.5949084781328744]
Large language models (LLMs) have emerged recently and show great promise for providing on-demand help at a large scale.
We introduce CodeHelp, a novel LLM-powered tool designed with guardrails to provide on-demand assistance to programming students without directly revealing solutions.
Our findings suggest that CodeHelp is well-received by students who especially value its availability and help with resolving errors, and that for instructors it is easy to deploy and complements, rather than replaces, the support that they provide to students.
arXiv Detail & Related papers (2023-08-14T03:52:24Z) - Automated Distractor and Feedback Generation for Math Multiple-choice
Questions via In-context Learning [43.83422798569986]
Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and reliable form of assessment.
To date, the task of crafting high-quality distractors has largely remained a labor-intensive process for teachers and learning content designers.
We propose a simple, in-context learning-based solution for automated distractor and corresponding feedback message generation.
arXiv Detail & Related papers (2023-08-07T01:03:04Z) - MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties
Grounded in Math Reasoning Problems [74.73881579517055]
We propose a framework to generate such dialogues by pairing human teachers with a Large Language Model prompted to represent common student errors.
We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues.
arXiv Detail & Related papers (2023-05-23T21:44:56Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science.
Standard approaches require instructors to manually grade student-implemented interactive programs.
Online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs.
arXiv Detail & Related papers (2022-11-16T10:00:23Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Dive into Deep Learning [119.30375933463156]
The book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code.
Our goal is to offer a resource that could (i) be freely available for everyone; (ii) offer sufficient technical depth to provide a starting point on the path to becoming an applied machine learning scientist; (iii) include runnable code, showing readers how to solve problems in practice; (iv) allow for rapid updates, both by us and also by the community at large.
arXiv Detail & Related papers (2021-06-21T18:19:46Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.