FW-Shapley: Real-time Estimation of Weighted Shapley Values
- URL: http://arxiv.org/abs/2503.06602v1
- Date: Sun, 09 Mar 2025 13:13:14 GMT
- Title: FW-Shapley: Real-time Estimation of Weighted Shapley Values
- Authors: Pranoy Panda, Siddharth Tandon, Vineeth N Balasubramanian,
- Abstract summary: We present Fast Weighted Shapley, an amortized framework for efficiently computing weighted Shapley values.<n>We also show that our estimator's training procedure is theoretically valid even though we do not use ground truth weighted Shapley values during training.<n>For data valuation, we are much faster (14 times) while being comparable to the state-of-the-art KNN Shapley.
- Score: 21.562508939780532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair credit assignment is essential in various machine learning (ML) applications, and Shapley values have emerged as a valuable tool for this purpose. However, in critical ML applications such as data valuation and feature attribution, the uniform weighting of Shapley values across subset cardinalities leads to unintuitive credit assignments. To address this, weighted Shapley values were proposed as a generalization, allowing different weights for subsets with different cardinalities. Despite their advantages, similar to Shapley values, Weighted Shapley values suffer from exponential compute costs, making them impractical for high-dimensional datasets. To tackle this issue, we present two key contributions. Firstly, we provide a weighted least squares characterization of weighted Shapley values. Next, using this characterization, we propose Fast Weighted Shapley (FW-Shapley), an amortized framework for efficiently computing weighted Shapley values using a learned estimator. We further show that our estimator's training procedure is theoretically valid even though we do not use ground truth Weighted Shapley values during training. On the feature attribution task, we outperform the learned estimator FastSHAP by $27\%$ (on average) in terms of Inclusion AUC. For data valuation, we are much faster (14 times) while being comparable to the state-of-the-art KNN Shapley.
Related papers
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAP framework enables us to approximate the Shapley values using a sampled subset of weighted conditional expectations.
We propose three main novel contributions: a stabilizing technique to reduce the variance of the weights in the current state-of-the-art strategy, a novel weighing scheme that corrects the Shapley kernel weights based on sampled subsets, and a straightforward strategy that includes the important subsets and integrates them with the corrected Shapley kernel weights.
arXiv Detail & Related papers (2024-10-07T10:02:31Z) - Efficient Data Shapley for Weighted Nearest Neighbor Algorithms [47.62605581521535]
WKNN-Shapley is an efficient computation of Data Shapley for weighted $K$ nearest neighbor algorithm (WKNN-Shapley)
We show WKNN-Shapley's computational efficiency and its superior performance in discerning data quality compared to its unweighted counterpart.
arXiv Detail & Related papers (2024-01-20T03:34:18Z) - Accelerated Shapley Value Approximation for Data Evaluation [3.707457963532597]
We show that Shapley value of data points can be approximated more efficiently by leveraging structural properties of machine learning problems.
Our analysis suggests that in fact models trained on small subsets are more important in context of data valuation.
arXiv Detail & Related papers (2023-11-09T13:15:36Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation [23.646508094051768]
We consider the dataset valuation problem, that is, the problem of quantifying the incremental gain.
The Shapley value is a natural tool to perform dataset valuation due to its formal axiomatic justification.
We propose a novel approximation, referred to as discrete uniform Shapley, which is expressed as an expectation under a discrete uniform distribution.
arXiv Detail & Related papers (2023-06-03T10:22:50Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
We develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations.
Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup.
arXiv Detail & Related papers (2023-05-31T16:19:13Z) - WeightedSHAP: analyzing and improving Shapley based feature attributions [17.340091573913316]
Shapley value is a popular approach for measuring the influence of individual features.
We propose WeightedSHAP, which generalizes the Shapley value and learns which marginal contributions to focus directly from data.
On several real-world datasets, we demonstrate that the influential features identified by WeightedSHAP are better able to recapitulate the model's predictions.
arXiv Detail & Related papers (2022-09-27T14:34:07Z) - Shapley-NAS: Discovering Operation Contribution for Neural Architecture
Search [96.20505710087392]
We propose a Shapley value based method to evaluate operation contribution (Shapley-NAS) for neural architecture search.
We show that our method outperforms the state-of-the-art methods by a considerable margin with light search cost.
arXiv Detail & Related papers (2022-06-20T14:41:49Z) - Fast Hierarchical Games for Image Explanations [78.16853337149871]
We present a model-agnostic explanation method for image classification based on a hierarchical extension of Shapley coefficients.
Unlike other Shapley-based explanation methods, h-Shap is scalable and can be computed without the need of approximation.
We compare our hierarchical approach with popular Shapley-based and non-Shapley-based methods on a synthetic dataset, a medical imaging scenario, and a general computer vision problem.
arXiv Detail & Related papers (2021-04-13T13:11:02Z) - Multicollinearity Correction and Combined Feature Effect in Shapley
Values [0.0]
Shapley values represent the importance of a feature for a particular row.
We present a unified framework to calculate Shapley values with correlated features.
arXiv Detail & Related papers (2020-11-03T12:28:42Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
We study the problem of data valuation by utilizing the Shapley value.
The Shapley value defines a unique payoff scheme that satisfies many desiderata for the notion of data value.
We propose a repertoire of efficient algorithms for approximating the Shapley value.
arXiv Detail & Related papers (2019-02-27T00:22:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.