UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion
- URL: http://arxiv.org/abs/2503.06687v1
- Date: Sun, 09 Mar 2025 16:43:07 GMT
- Title: UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion
- Authors: Gongbo Zhang, Yanting Li, Renqian Luo, Pipi Hu, Zeru Zhao, Lingbo Li, Guoqing Liu, Zun Wang, Ran Bi, Kaiyuan Gao, Liya Guo, Yu Xie, Chang Liu, Jia Zhang, Tian Xie, Robert Pinsler, Claudio Zeni, Ziheng Lu, Yingce Xia, Marwin Segler, Maik Riechert, Li Yuan, Lei Chen, Haiguang Liu, Tao Qin,
- Abstract summary: Existing approaches rely on either autoregressive sequence models or diffusion models.<n>We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.<n>We validate the effectiveness of UniGenX on material and small molecule generation tasks.
- Score: 61.690978792873196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.
Related papers
- Predicting gene essentiality and drug response from perturbation screens in preclinical cancer models with LEAP: Layered Ensemble of Autoencoders and Predictors [0.0]
We introduce LEAP (Layered Ensemble of Autoencoders and Predictors), a novel ensemble framework to improve robustness and generalization.
LEAP consistently outperforms state-of-the-art approaches in predicting gene essentiality or drug responses in unseen cell lines, tissues and disease models.
arXiv Detail & Related papers (2025-02-21T18:12:36Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design [56.957070405026194]
We propose an algorithm that enables direct backpropagation of rewards through entire trajectories generated by diffusion models.
DRAKES can generate sequences that are both natural-like and yield high rewards.
arXiv Detail & Related papers (2024-10-17T15:10:13Z) - Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen [76.02070962797794]
This work introduces CellFlow for Generation (CFGen), a flow-based conditional generative model that preserves the inherent discreteness of single-cell data.<n>CFGen generates whole-genome multi-modal single-cell data reliably, improving the recovery of crucial biological data characteristics.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
coarse-grained (CG) model with similar prediction performance has been a long-standing challenge.
We develop a bottom-up CG force field with chemical transferability, which can be used for extrapolative molecular dynamics on new sequences.
We demonstrate that the model successfully predicts folded structures, intermediates, metastable folded and unfolded basins, and the fluctuations of intrinsically disordered proteins.
arXiv Detail & Related papers (2023-10-27T17:10:23Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.