ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration
- URL: http://arxiv.org/abs/2503.06881v1
- Date: Mon, 10 Mar 2025 03:15:54 GMT
- Title: ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration
- Authors: Mengting Ai, Tianxin Wei, Yifan Chen, Zhichen Zeng, Ritchie Zhao, Girish Varatkar, Bita Darvish Rouhani, Xianfeng Tang, Hanghang Tong, Jingrui He,
- Abstract summary: Mixture-of-Experts (MoE) Transformer, the backbone of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token.<n>We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones.
- Score: 61.579842548990754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture-of-Experts (MoE) Transformer, the backbone architecture of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token. The sparse structure, while allowing constant time costs, results in space inefficiency: we still need to load all the model parameters during inference. We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones. ResMoE enhances the space efficiency for inference of large-scale MoE Transformers in a one-shot and data-agnostic manner without retraining while maintaining minimal accuracy loss, thereby paving the way for broader accessibility to large language models. We demonstrate the effectiveness of ResMoE through extensive experiments on Switch Transformer, Mixtral, and DeepSeekMoE models. The results show that ResMoE can reduce the number of parameters in an expert by up to 75% while maintaining comparable performance. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/ResMoE.
Related papers
- Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation [158.37640586809187]
Restoring any degraded image efficiently via just one model has become increasingly significant.
Our approach, termed AnyIR, takes a unified path that leverages inherent similarity across various degradations.
To fuse the degradation awareness and the contextualized attention, a spatial-frequency parallel fusion strategy is proposed.
arXiv Detail & Related papers (2025-04-19T09:54:46Z) - CMoE: Fast Carving of Mixture-of-Experts for Efficient LLM Inference [33.871080938643566]
Large language models (LLMs) achieve impressive performance by scaling model parameters, but this comes with significant inference overhead.<n>We propose CMoE, a novel framework to efficiently carve MoE models from dense models.<n>CMoE achieves remarkable performance through efficient expert grouping and lightweight adaptation.
arXiv Detail & Related papers (2025-02-06T14:05:30Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
tool is a novel MoE designed to enhance both the efficacy and efficiency of sparse MoE models.
tool can enhance model performance while decreasing the computation load at MoE layers by over 50% without sacrificing performance.
arXiv Detail & Related papers (2024-02-27T08:18:02Z) - AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for
Efficient Neural Machine Translation [104.0979785739202]
Mixture-of-Expert (MoE) models have obtained state-of-the-art performance in Neural Machine Translation (NMT) tasks.
Existing MoE models mostly consider a homogeneous design where the same number of experts of the same size are placed uniformly throughout the network.
We develop AutoMoE -- a framework for designing heterogeneous MoE's under computational constraints.
arXiv Detail & Related papers (2022-10-14T05:32:17Z) - Task-Specific Expert Pruning for Sparse Mixture-of-Experts [105.20605021416276]
Mixture-of-Experts (MoE) model is powerful for large-scale pre-training.
MoE is hard to be deployed on cloud or mobile environment.
We propose a general method to progressively drop the non-professional experts for the target downstream task.
arXiv Detail & Related papers (2022-06-01T07:09:01Z) - Taming Sparsely Activated Transformer with Stochastic Experts [76.0711573018493]
Sparsely activated models (SAMs) can easily scale to have outrageously large amounts of parameters without significant increase in computational cost.
In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts)
Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference.
arXiv Detail & Related papers (2021-10-08T17:15:47Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.