HybridReg: Robust 3D Point Cloud Registration with Hybrid Motions
- URL: http://arxiv.org/abs/2503.07019v1
- Date: Mon, 10 Mar 2025 08:01:32 GMT
- Title: HybridReg: Robust 3D Point Cloud Registration with Hybrid Motions
- Authors: Keyu Du, Hao Xu, Haipeng Li, Hong Qu, Chi-Wing Fu, Shuaicheng Liu,
- Abstract summary: HybridReg is a new approach to 3D point cloud registration, learning uncertainty mask to account for hybrid motions.<n>To our best knowledge, HybridReg is the first work that exploits hybrid motions for robust point cloud registration.
- Score: 69.03925610407124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene-level point cloud registration is very challenging when considering dynamic foregrounds. Existing indoor datasets mostly assume rigid motions, so the trained models cannot robustly handle scenes with non-rigid motions. On the other hand, non-rigid datasets are mainly object-level, so the trained models cannot generalize well to complex scenes. This paper presents HybridReg, a new approach to 3D point cloud registration, learning uncertainty mask to account for hybrid motions: rigid for backgrounds and non-rigid/rigid for instance-level foregrounds. First, we build a scene-level 3D registration dataset, namely HybridMatch, designed specifically with strategies to arrange diverse deforming foregrounds in a controllable manner. Second, we account for different motion types and formulate a mask-learning module to alleviate the interference of deforming outliers. Third, we exploit a simple yet effective negative log-likelihood loss to adopt uncertainty to guide the feature extraction and correlation computation. To our best knowledge, HybridReg is the first work that exploits hybrid motions for robust point cloud registration. Extensive experiments show HybridReg's strengths, leading it to achieve state-of-the-art performance on both widely-used indoor and outdoor datasets.
Related papers
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.
We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.
With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - PointDifformer: Robust Point Cloud Registration With Neural Diffusion and Transformer [31.02661827570958]
Point cloud registration is a fundamental technique in 3-D computer vision with applications in graphics, autonomous driving, and robotics.
We propose a robust point cloud registration approach that leverages graph neural partial differential equations (PDEs) and heat kernel signatures.
Empirical experiments on a 3-D point cloud dataset demonstrate that our approach not only achieves state-of-the-art performance for point cloud registration but also exhibits better robustness to additive noise or 3-D shape perturbations.
arXiv Detail & Related papers (2024-04-22T09:50:12Z) - Regularizing Self-supervised 3D Scene Flows with Surface Awareness and Cyclic Consistency [3.124750429062221]
We introduce two new consistency losses that enlarge clusters while preventing them from spreading over distinct objects.
The proposed losses are model-independent and can thus be used in a plug-and-play fashion to significantly improve the performance of existing models.
We also showcase the effectiveness and generalization capability of our framework on four standard sensor-unique driving datasets.
arXiv Detail & Related papers (2023-12-12T11:00:39Z) - ZeroReg: Zero-Shot Point Cloud Registration with Foundation Models [77.84408427496025]
State-of-the-art 3D point cloud registration methods rely on labeled 3D datasets for training.<n>We introduce ZeroReg, a zero-shot registration approach that utilizes 2D foundation models to predict 3D correspondences.
arXiv Detail & Related papers (2023-12-05T11:33:16Z) - EPCL: Frozen CLIP Transformer is An Efficient Point Cloud Encoder [60.52613206271329]
This paper introduces textbfEfficient textbfPoint textbfCloud textbfLearning (EPCL) for training high-quality point cloud models with a frozen CLIP transformer.
Our EPCL connects the 2D and 3D modalities by semantically aligning the image features and point cloud features without paired 2D-3D data.
arXiv Detail & Related papers (2022-12-08T06:27:11Z) - Data Augmentation-free Unsupervised Learning for 3D Point Cloud
Understanding [61.30276576646909]
We propose an augmentation-free unsupervised approach for point clouds to learn transferable point-level features via soft clustering, named SoftClu.
We exploit the affiliation of points to their clusters as a proxy to enable self-training through a pseudo-label prediction task.
arXiv Detail & Related papers (2022-10-06T10:18:16Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
We propose to leverage the input point cloud as much as possible, by only adding connectivity information to existing points.
Our key innovation is a surrogate of local connectivity, calculated by comparing the intrinsic/extrinsic metrics.
We demonstrate that our method can not only preserve details, handle ambiguous structures, but also possess strong generalizability to unseen categories.
arXiv Detail & Related papers (2020-07-17T22:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.