YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel-Level Motion Fusion
- URL: http://arxiv.org/abs/2503.07115v1
- Date: Mon, 10 Mar 2025 09:44:21 GMT
- Title: YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel-Level Motion Fusion
- Authors: Hanqing Guo, Xiuxiu Lin, Shiyu Zhao,
- Abstract summary: This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments.<n>It starts by creating a motion difference map to capture the motion characteristics of tiny drones.<n>Next, this motion difference map is combined with an RGB image using a bimodal fusion module, allowing for adaptive feature learning of the drone.
- Score: 9.810747004677474
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision-based drone-to-drone detection has attracted increasing attention due to its importance in numerous tasks such as vision-based swarming, aerial see-and-avoid, and malicious drone detection. However, existing methods often encounter failures when the background is complex or the target is tiny. This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments using motion guidance. It starts by creating a motion difference map to capture the motion characteristics of tiny drones. Next, this motion difference map is combined with an RGB image using a bimodal fusion module, allowing for adaptive feature learning of the drone. Finally, the fused feature map is processed through an enhanced backbone and detection head based on the YOLOv5 framework to achieve accurate detection results. To validate our method, we propose a new dataset, named ARD100, which comprises 100 videos (202,467 frames) covering various challenging conditions and has the smallest average object size compared with the existing drone detection datasets. Extensive experiments on the ARD100 and NPS-Drones datasets show that our proposed detector performs exceptionally well under challenging conditions and surpasses state-of-the-art algorithms across various metrics. We publicly release the codes and ARD100 dataset at https://github.com/Irisky123/YOLOMG.
Related papers
- Improving Small Drone Detection Through Multi-Scale Processing and Data Augmentation [2.522137108227868]
This work introduces a drone detection methodology built upon the medium-sized YOLOv11 object detection model.
To enhance its performance on small targets, we implemented a multi-scale approach in which the input image is processed both as a whole and in segmented parts, with subsequent prediction aggregation.
The proposed approach attained a top-3 ranking in the 8th WOSDETC Drone-vsBird Detection Grand Challenge, held at the 2025 International Joint Conference on Neural Networks.
arXiv Detail & Related papers (2025-04-27T20:06:55Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations.<n>We propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT.<n>We also propose a reinforcement learning-based drone tracking method called R-VAT.
arXiv Detail & Related papers (2024-12-01T09:37:46Z) - DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
Drone detection is a challenging object detection task where visibility conditions and quality of the images may be unfavorable.
Our work improves on the previous approach by combining several improvements.
The proposed technique won 1st Place in the Drone vs. Bird Challenge.
arXiv Detail & Related papers (2024-06-30T20:49:56Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks [23.133250476580038]
A vision-based drone-to-drone detection system is crucial for various applications like collision avoidance, countering hostile drones, and search-and-rescue operations.
detecting drones presents unique challenges, including small object sizes, distortion, and real-time processing requirements.
We propose a novel coarse-to-fine detection strategy based on vision transformers.
arXiv Detail & Related papers (2024-04-30T05:51:21Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.