Reducing Friction in Cloud Migration of Services
- URL: http://arxiv.org/abs/2503.07169v1
- Date: Mon, 10 Mar 2025 10:47:27 GMT
- Title: Reducing Friction in Cloud Migration of Services
- Authors: Anders Sundelin, Javier Gonzalez-Huerta, Krzysztof Wnuk,
- Abstract summary: A large-scale product development organization considered migrating a microservice-based product deployments of a large customer to a public cloud provider.<n>We conducted an exploratory single-case study to understand how and why deployment costs would change when transitioning the product from a private to a public cloud environment.<n>We found that switching to the customer-chosen public cloud provider would increase costs by up to 50%, even when sharing some resources between deployments.
- Score: 5.680416078423551
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Public cloud services are integral to modern software development, offering scalability and flexibility to organizations. Based on customer requests, a large-scale product development organization considered migrating the microservice-based product deployments of a large customer to a public cloud provider. We conducted an exploratory single-case study, utilizing quantitative and qualitative data analysis to understand how and why deployment costs would change when transitioning the product from a private to a public cloud environment while preserving the software architecture. We also isolated the major factors driving the changes in deployment costs. We found that switching to the customer-chosen public cloud provider would increase costs by up to 50\%, even when sharing some resources between deployments, and limiting the use of expensive cloud services such as security log analyzers. A large part of the cost was related to the sizing and license costs of the existing relational database, which was running on Virtual Machines in the cloud. We also found that existing system integrators, using the product via its API, were likely to use the product inefficiently, in many cases causing at least 10\% more load to the system than needed. From a deployment cost perspective, successful migration to a public cloud requires considering the entire system architecture, including services like relational databases, value-added cloud services, and enabled product features. Our study highlights the importance of leveraging end-to-end usage data to assess and manage these cost drivers effectively, especially in environments with elastic costs, such as public cloud deployments.
Related papers
- An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices [20.638612359627952]
As migrating applications into the cloud is universally adopted by the software industry, have proven to be the most suitable and widely accepted architecture pattern for applications deployed on distributed cloud.
Their efficacy is enabled by both technical benefits like reliability, fault isolation, scalability and productivity benefits like ease of asset maintenance and clear ownership boundaries.
In some cases, the complexity of migrating an existing application into the architecture becomes overwhelmingly complex and expensive.
arXiv Detail & Related papers (2024-08-13T02:08:59Z) - Statically Inferring Usage Bounds for Infrastructure as Code [0.9886108751871757]
Infrastructure as Code (IaC) has enabled cloud customers to have more agility in creating and modifying complex deployments of cloud-provisioned resources.
We propose a tool for fine-grained static usage analysis that works by modeling the inter-resource interactions in an IaC deployment as a set of constraints.
arXiv Detail & Related papers (2024-02-23T22:27:56Z) - SpotServe: Serving Generative Large Language Models on Preemptible
Instances [64.18638174004151]
SpotServe is the first distributed large language models serving system on preemptible instances.
We show that SpotServe can reduce the P99 tail latency by 2.4 - 9.1x compared with the best existing LLM serving systems.
We also show that SpotServe can leverage the price advantage of preemptive instances, saving 54% monetary cost compared with only using on-demand instances.
arXiv Detail & Related papers (2023-11-27T06:31:17Z) - Mining for Cost Awareness in the Infrastructure as Code Artifacts of Cloud-based Applications: an Exploratory Study [1.5612101323427952]
This study aims to provide empirical evidence of cost awareness by mining open source repositories of cloud-based applications.
A systematic search through 152,735 repositories resulted in the selection of 2,010 relevant ones.
The findings indicate that developers are not only concerned with the cost of their application deployments but also take actions to reduce these costs.
arXiv Detail & Related papers (2023-04-15T10:49:35Z) - Managing Cold-start in The Serverless Cloud with Temporal Convolutional
Networks [0.0]
Serverless cloud is an innovative cloud service model that frees customers from most cloud management duties.
A big threat to the serverless cloud's performance is cold-start, which is when the time of provisioning the needed cloud resource to serve customers' requests incurs unacceptable costs to the service providers and/or the customers.
This paper proposes a novel low-coupling, high-cohesion ensemble policy that addresses the cold-start problem at infrastructure- and function-levels of the serverless cloud stack.
arXiv Detail & Related papers (2023-04-01T21:54:22Z) - Outsourcing Training without Uploading Data via Efficient Collaborative
Open-Source Sampling [49.87637449243698]
Traditional outsourcing requires uploading device data to the cloud server.
We propose to leverage widely available open-source data, which is a massive dataset collected from public and heterogeneous sources.
We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct a proximal proxy dataset from open-source data for cloud training.
arXiv Detail & Related papers (2022-10-23T00:12:18Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
This paper describes the techniques and engineering practice behind Auto-Split, an edge-cloud collaborative prototype of Huawei Cloud.
To the best of our knowledge, there is no existing industry product that provides the capability of Deep Neural Network (DNN) splitting.
arXiv Detail & Related papers (2021-08-30T08:03:29Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
Infrastructure as a Service (I) is one of the most important and rapidly growing fields.
One of the most important aspects of cloud computing for I is resource management.
Machine learning is being used to handle a variety of resource management tasks.
arXiv Detail & Related papers (2021-05-09T08:03:58Z) - Optimal Pricing of Internet of Things: A Machine Learning Approach [105.4312167370975]
Internet of things (IoT) produces massive data from devices embedded with sensors.
Previous research does not address the problem of optimal pricing and bundling of machine learning-based IoT services.
We present an IoT market model which consists of data vendors selling data to service providers, and service providers offering IoT services to customers.
arXiv Detail & Related papers (2020-02-14T09:17:40Z) - Knowledge Integration of Collaborative Product Design Using Cloud
Computing Infrastructure [65.2157099438235]
The main focus of this paper is the concept of ongoing research in providing the knowledge integration service for collaborative product design and development using cloud computing infrastructure.
Proposed knowledge integration services support users by giving real-time access to knowledge resources.
arXiv Detail & Related papers (2020-01-16T18:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.