How Well Can Differential Privacy Be Audited in One Run?
- URL: http://arxiv.org/abs/2503.07199v1
- Date: Mon, 10 Mar 2025 11:32:30 GMT
- Title: How Well Can Differential Privacy Be Audited in One Run?
- Authors: Amit Keinan, Moshe Shenfeld, Katrina Ligett,
- Abstract summary: We characterize the maximum achievable efficacy of one-run auditing.<n>We show that one-run auditing can only perfectly uncover the true privacy parameters of algorithms whose structure allows the effects of individual data elements to be isolated.
- Score: 2.687273760177295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent methods for auditing the privacy of machine learning algorithms have improved computational efficiency by simultaneously intervening on multiple training examples in a single training run. Steinke et al. (2024) prove that one-run auditing indeed lower bounds the true privacy parameter of the audited algorithm, and give impressive empirical results. Their work leaves open the question of how precisely one-run auditing can uncover the true privacy parameter of an algorithm, and how that precision depends on the audited algorithm. In this work, we characterize the maximum achievable efficacy of one-run auditing and show that one-run auditing can only perfectly uncover the true privacy parameters of algorithms whose structure allows the effects of individual data elements to be isolated. Our characterization helps reveal how and when one-run auditing is still a promising technique for auditing real machine learning algorithms, despite these fundamental gaps.
Related papers
- Privacy Audit as Bits Transmission: (Im)possibilities for Audit by One Run [7.850976675388593]
We introduce a unifying framework for privacy audits based on information-theoretic principles.<n>We demystify the method of privacy audit by one run, identifying the conditions under which single-run audits are feasible or infeasible.
arXiv Detail & Related papers (2025-01-29T16:38:51Z) - Auditing $f$-Differential Privacy in One Run [43.34594422920125]
Empirical auditing has emerged as a means of catching some of the flaws in the implementation of privacy-preserving algorithms.
We present a tight and efficient auditing procedure and analysis that can effectively assess the privacy of mechanisms.
arXiv Detail & Related papers (2024-10-29T17:02:22Z) - A Game-Theoretic Analysis of Auditing Differentially Private Algorithms with Epistemically Disparate Herd [16.10098472773814]
This study examines the impact of herd audits on algorithm developers using the Stackelberg game approach.
By enhancing transparency and accountability, herd audit contributes to the responsible development of privacy-preserving algorithms.
arXiv Detail & Related papers (2024-04-24T20:34:27Z) - The Decisive Power of Indecision: Low-Variance Risk-Limiting Audits and Election Contestation via Marginal Mark Recording [51.82772358241505]
Risk-limiting audits (RLAs) are techniques for verifying the outcomes of large elections.
We define new families of audits that improve efficiency and offer advances in statistical power.
New audits are enabled by revisiting the standard notion of a cast-vote record so that it can declare multiple possible mark interpretations.
arXiv Detail & Related papers (2024-02-09T16:23:54Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
For private machine learning, existing auditing mechanisms are tight.
They only give tight estimates under implausible worst-case assumptions.
We design an improved auditing scheme that yields tight privacy estimates for natural (not adversarially crafted) datasets.
arXiv Detail & Related papers (2023-02-15T21:40:33Z) - Debugging Differential Privacy: A Case Study for Privacy Auditing [60.87570714269048]
We show that auditing can also be used to find flaws in (purportedly) differentially private schemes.
In this case study, we audit a recent open source implementation of a differentially private deep learning algorithm and find, with 99.99999999% confidence, that the implementation does not satisfy the claimed differential privacy guarantee.
arXiv Detail & Related papers (2022-02-24T17:31:08Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.