Coreset Spectral Clustering
- URL: http://arxiv.org/abs/2503.07227v1
- Date: Mon, 10 Mar 2025 12:14:02 GMT
- Title: Coreset Spectral Clustering
- Authors: Ben Jourdan, Gregory Schwartzman, Peter Macgregor, He Sun,
- Abstract summary: We exploit the connection between kernel $k$-means and the normalised cut problem to combine the benefits of both.<n>Our main result is a coreset spectral clustering algorithm for graphs that clusters a coreset graph to infer a good labelling of the original graph.
- Score: 12.244933452638312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coresets have become an invaluable tool for solving $k$-means and kernel $k$-means clustering problems on large datasets with small numbers of clusters. On the other hand, spectral clustering works well on sparse graphs and has recently been extended to scale efficiently to large numbers of clusters. We exploit the connection between kernel $k$-means and the normalised cut problem to combine the benefits of both. Our main result is a coreset spectral clustering algorithm for graphs that clusters a coreset graph to infer a good labelling of the original graph. We prove that an $\alpha$-approximation for the normalised cut problem on the coreset graph is an $O(\alpha)$-approximation on the original. We also improve the running time of the state-of-the-art coreset algorithm for kernel $k$-means on sparse kernels, from $\tilde{O}(nk)$ to $\tilde{O}(n\cdot \min \{k, d_{avg}\})$, where $d_{avg}$ is the average number of non-zero entries in each row of the $n\times n$ kernel matrix. Our experiments confirm our coreset algorithm is asymptotically faster on large real-world graphs with many clusters, and show that our clustering algorithm overcomes the main challenge faced by coreset kernel $k$-means on sparse kernels which is getting stuck in local optima.
Related papers
- Near-Optimal Clustering in Mixture of Markov Chains [74.3828414695655]
We study the problem of clustering $T$ trajectories of length $H$, each generated by one of $K$ unknown ergodic Markov chains over a finite state space of size $S$.<n>We derive an instance-dependent, high-probability lower bound on the clustering error rate, governed by the weighted KL divergence between the transition kernels of the chains.<n>We then present a novel two-stage clustering algorithm.
arXiv Detail & Related papers (2025-06-02T05:10:40Z) - Generalization Performance of Ensemble Clustering: From Theory to Algorithm [57.176040163699554]
This paper focuses on generalization error, excess risk and consistency in ensemble clustering.<n>By assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation.<n>We instantiate our theory to develop a new ensemble clustering algorithm.
arXiv Detail & Related papers (2025-06-01T09:34:52Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis.
We introduce a simple randomized clustering algorithm that provably runs in expected time $O(mathrmnnz(X) + nlog n)$ for arbitrary $k$.
We prove that our algorithm achieves approximation ratio $smashwidetildeO(k4)$ on any input dataset for the $k$-means objective.
arXiv Detail & Related papers (2023-10-25T16:37:45Z) - Fast and Simple Spectral Clustering in Theory and Practice [7.070726553564701]
Spectral clustering is a popular and effective algorithm designed to find $k$ clusters in a graph $G$.
We present a simple spectral clustering algorithm based on a vertices embedding with $O(log(k))$ computed by the power method.
We evaluate the new algorithm on several synthetic and real-world datasets, finding that it is significantly faster than alternative clustering algorithms, while producing results with approximately the same clustering accuracy.
arXiv Detail & Related papers (2023-10-17T02:31:57Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
A deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink.
By discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner.
The clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss.
Compared to the runner-up, Dink-Net 9.62% achieves NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges.
arXiv Detail & Related papers (2023-05-28T15:33:24Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Sub-quadratic Algorithms for Kernel Matrices via Kernel Density
Estimation [24.166833799353476]
We develop efficient reductions from $textitweighted edge sampling$ on kernel graphs, $textitsimulating random walks$ on kernel graphs, and $textitweighted sampling$ on matrices to Kernel Density Estimation.
Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest.
arXiv Detail & Related papers (2022-12-01T16:42:56Z) - Global $k$-means$++$: an effective relaxation of the global $k$-means
clustering algorithm [0.20305676256390928]
The $k$-means algorithm is a prevalent clustering method due to its simplicity, effectiveness, and speed.
We propose the emphglobal $k$-meanstexttt++ clustering algorithm, which is an effective way of acquiring quality clustering solutions.
arXiv Detail & Related papers (2022-11-22T13:42:53Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - Nearly-Tight and Oblivious Algorithms for Explainable Clustering [8.071379672971542]
We study the problem of explainable clustering in the setting first formalized by Moshkovitz, Dasgupta, Rashtchian, and Frost (ICML 2020)
A $k$-clustering is said to be explainable if it is given by a decision tree where each internal node data points with a threshold cut in a single dimension (feature)
We give an algorithm that outputs an explainable clustering that loses at most a factor of $O(log2 k)$ compared to an optimal (not necessarily explainable) clustering for the $k$-medians objective.
arXiv Detail & Related papers (2021-06-30T15:49:41Z) - Online Coresets for Clustering with Bregman Divergences [11.650724544695498]
We present algorithms that create coresets in an online setting for clustering problems according to a wide subset of Bregman divergences.
Notably, our coresets have a small additive error, similar in magnitude to the lightweight coresets Bachem et. al. 2018.
arXiv Detail & Related papers (2020-12-11T17:39:21Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.