Now you see me! A framework for obtaining class-relevant saliency maps
- URL: http://arxiv.org/abs/2503.07346v1
- Date: Mon, 10 Mar 2025 13:59:57 GMT
- Title: Now you see me! A framework for obtaining class-relevant saliency maps
- Authors: Nils Philipp Walter, Jilles Vreeken, Jonas Fischer,
- Abstract summary: Saliency maps have been developed to gain understanding into which input features neural networks use for a specific prediction.<n>Although widely employed, these methods often result in overly general saliency maps that fail to identify the specific information that triggered the classification.<n>We suggest a framework that allows to incorporate attributions across classes to arrive at saliency maps that actually capture the class-relevant information.
- Score: 38.663697418404546
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks are part of daily-life decision-making, including in high-stakes settings where understanding and transparency are key. Saliency maps have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely employed, these methods often result in overly general saliency maps that fail to identify the specific information that triggered the classification. In this work, we suggest a framework that allows to incorporate attributions across classes to arrive at saliency maps that actually capture the class-relevant information. On established benchmarks for attribution methods, including the grid-pointing game and randomization-based sanity checks, we show that our framework heavily boosts the performance of standard saliency map approaches. It is, by design, agnostic to model architectures and attribution methods and now allows to identify the distinguishing and shared features used for a model prediction.
Related papers
- Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification [3.9626211140865464]
Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years.
However, due to their size and complexity, they function as black-boxes, leading to transparency concerns.
This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods.
arXiv Detail & Related papers (2024-11-08T16:52:52Z) - Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals [4.384272169863716]
Interpretability is crucial for machine learning algorithms in high-stakes medical applications.
Attri-Net is an inherently interpretable model for multi-label classification that provides local and global explanations.
arXiv Detail & Related papers (2024-06-08T13:52:02Z) - Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability methods generate saliency maps to show where a specific class is identified.
We introduce a post-hoc method that explains the entire feature extraction process of a Convolutional Neural Network.
We also show an approach to generate global explanations by aggregating labels across multiple images.
arXiv Detail & Related papers (2024-05-06T09:21:35Z) - A Fixed-Point Approach to Unified Prompt-Based Counting [51.20608895374113]
This paper aims to establish a comprehensive prompt-based counting framework capable of generating density maps for objects indicated by various prompt types, such as box, point, and text.
Our model excels in prominent class-agnostic datasets and exhibits superior performance in cross-dataset adaptation tasks.
arXiv Detail & Related papers (2024-03-15T12:05:44Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
High-definition (HD) semantic maps are crucial in enabling autonomous vehicles to navigate urban environments.
Traditional method of creating offline HD maps involves labor-intensive manual annotation processes.
Recent studies have proposed an alternative approach that generates local maps using online sensor observations.
In this study, we propose Neural Map Prior (NMP), a neural representation of global maps.
arXiv Detail & Related papers (2023-04-17T17:58:40Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Graph Sampling Based Deep Metric Learning for Generalizable Person
Re-Identification [114.56752624945142]
We argue that the most popular random sampling method, the well-known PK sampler, is not informative and efficient for deep metric learning.
We propose an efficient mini batch sampling method called Graph Sampling (GS) for large-scale metric learning.
arXiv Detail & Related papers (2021-04-04T06:44:15Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
We develop an algorithm that provides per-class explainability.
In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization.
arXiv Detail & Related papers (2020-12-03T18:48:39Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.