RePO: ReLU-based Preference Optimization
- URL: http://arxiv.org/abs/2503.07426v1
- Date: Mon, 10 Mar 2025 15:11:07 GMT
- Title: RePO: ReLU-based Preference Optimization
- Authors: Junkang Wu, Kexin Huang, Xue Wang, Jinyang Gao, Bolin Ding, Jiancan Wu, Xiangnan He, Xiang Wang,
- Abstract summary: We propose ReLU-based Preference Optimization (RePO), a streamlined algorithm that eliminates $beta$ via two advances.<n>RePO is characterized as SimPO's limiting case ($beta to infty$), where the logistic weighting collapses to binary thresholding.<n> Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models.
- Score: 47.87283407390014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
Related papers
- $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
$chi2$-Preference Optimization ($chi$PO) is an efficient offline alignment algorithm provably robust to overoptimization.
$chi$PO implements the principle of pessimism in the face of uncertainty via regularization.
$chi$PO's simplicity and strong guarantees make it the first practical and general-purpose offline alignment algorithm provably robust to overoptimization.
arXiv Detail & Related papers (2024-07-18T11:08:40Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.<n>In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.<n>We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Reinforcement Learning from Human Feedback with Active Queries [59.855433734053555]
Current reinforcement learning approaches often require a large amount of human-labelled preference data.
We propose query-efficient RLHF methods inspired by the success of active learning.
Our experiments show that ADPO, while only making about half of queries for human preference, matches the performance of the state-of-the-art DPO method.
arXiv Detail & Related papers (2024-02-14T18:58:40Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
We propose a simple and intuitive off-policy preference optimization algorithm from an importance sampling view, which we call Maximum Preference Optimization (MPO)
MPO achieves the best of both worlds by combining the objectives of RLHF and IPO while being an off-policy algorithm.
arXiv Detail & Related papers (2023-12-27T06:34:54Z) - A Theoretical Analysis of Optimistic Proximal Policy Optimization in
Linear Markov Decision Processes [13.466249082564213]
We propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback.
Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both linear MDPs and adversarial linear MDPs with full information.
arXiv Detail & Related papers (2023-05-15T17:55:24Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and avoids violation of certain constraints.
This is the first-time analysis of SRL algorithms with global optimal policies.
arXiv Detail & Related papers (2020-11-11T16:05:14Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.