EigenGS Representation: From Eigenspace to Gaussian Image Space
- URL: http://arxiv.org/abs/2503.07446v2
- Date: Wed, 12 Mar 2025 06:21:58 GMT
- Title: EigenGS Representation: From Eigenspace to Gaussian Image Space
- Authors: Lo-Wei Tai, Ching-En Li, Cheng-Lin Chen, Chih-Jung Tsai, Hwann-Tzong Chen, Tyng-Luh Liu,
- Abstract summary: EigenGS is an efficient transformation pipeline connecting eigenspace and image-space Gaussian representations.<n>We show that EigenGS achieves superior reconstruction quality compared to direct 2D Gaussian fitting.<n>The results highlight EigenGS's effectiveness and generalization ability across images with varying resolutions and diverse categories.
- Score: 20.454762899389358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Principal Component Analysis (PCA), a classical dimensionality reduction technique, and 2D Gaussian representation, an adaptation of 3D Gaussian Splatting for image representation, offer distinct approaches to modeling visual data. We present EigenGS, a novel method that bridges these paradigms through an efficient transformation pipeline connecting eigenspace and image-space Gaussian representations. Our approach enables instant initialization of Gaussian parameters for new images without requiring per-image optimization from scratch, dramatically accelerating convergence. EigenGS introduces a frequency-aware learning mechanism that encourages Gaussians to adapt to different scales, effectively modeling varied spatial frequencies and preventing artifacts in high-resolution reconstruction. Extensive experiments demonstrate that EigenGS not only achieves superior reconstruction quality compared to direct 2D Gaussian fitting but also reduces necessary parameter count and training time. The results highlight EigenGS's effectiveness and generalization ability across images with varying resolutions and diverse categories, making Gaussian-based image representation both high-quality and viable for real-time applications.
Related papers
- Gaussian Graph Network: Learning Efficient and Generalizable Gaussian Representations from Multi-view Images [12.274418254425019]
3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis performance.
We propose Gaussian Graph Network (GGN) to generate efficient and generalizable Gaussian representations.
We conduct experiments on the large-scale RealEstate10K and ACID datasets to demonstrate the efficiency and generalization of our method.
arXiv Detail & Related papers (2025-03-20T16:56:13Z) - Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution [10.074968164380314]
Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR)<n>We develop two novel techniques to generalize GS for ASR.<n>We implement an efficient differentiable 2D GPU/CUDA-based scale-awareization to render super-resolved images.
arXiv Detail & Related papers (2025-01-12T15:14:58Z) - Geometric Algebra Planes: Convex Implicit Neural Volumes [70.12234371845445]
We show that GA-Planes is equivalent to a sparse low-rank factor plus low-resolution matrix.
We also show that GA-Planes can be adapted for many existing representations.
arXiv Detail & Related papers (2024-11-20T18:21:58Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
We propose Image-GS, a content-adaptive image representation.
Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack.
General efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors.
We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo [54.00987996368157]
We present MVSGaussian, a new generalizable 3D Gaussian representation approach derived from Multi-View Stereo (MVS)
MVSGaussian achieves real-time rendering with better synthesis quality for each scene.
arXiv Detail & Related papers (2024-05-20T17:59:30Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.<n>We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.<n>We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
It is challenging for users to directly deform or manipulate implicit representations with large deformations in the real-time fashion.
We develop a novel GS-based method that enables interactive deformation.
Our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate.
arXiv Detail & Related papers (2024-02-07T12:36:54Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.