GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
- URL: http://arxiv.org/abs/2503.07519v1
- Date: Mon, 10 Mar 2025 16:42:48 GMT
- Title: GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
- Authors: Justus-Jonas Erker, Nils Reimers, Iryna Gurevych,
- Abstract summary: We introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance.<n> GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training.<n>We find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance.
- Score: 52.47514434103737
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Decomposition-based multi-hop retrieval methods rely on many autoregressive steps to break down complex queries, which breaks end-to-end differentiability and is computationally expensive. Decomposition-free methods tackle this, but current decomposition-free approaches struggle with longer multi-hop problems and generalization to out-of-distribution data. To address these challenges, we introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks. GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training. Through controlled studies, we find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance. By including elements such as final answers during training, the model learns to better contextualize and retrieve relevant information. GRITHopper-7B offers a robust, scalable, and generalizable solution for multi-hop dense retrieval, and we release it to the community for future research and applications requiring multi-hop reasoning and retrieval capabilities.
Related papers
- MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
We introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios.
We propose three tasks to assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity.
arXiv Detail & Related papers (2025-03-11T05:02:03Z) - MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity [30.346398341996476]
We propose a reinforcement learning-based framework that dynamically selects the most suitable retrieval strategy based on query complexity.<n>Our method achieves new state of the art results on multiple single-hop and multi-hop datasets while reducing retrieval costs.
arXiv Detail & Related papers (2024-12-02T14:55:02Z) - FLARE: Faithful Logic-Aided Reasoning and Exploration [50.9814063216852]
We introduce a novel approach for traversing the problem space using task decompositions.<n>We use the Large Language Models to plan a solution, soft-formalise the query into facts and predicates using a logic programming code.<n>Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers.
arXiv Detail & Related papers (2024-10-14T19:39:11Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
We introduce EfficientRAG, an efficient retriever for multi-hop question answering.
Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
arXiv Detail & Related papers (2024-08-08T06:57:49Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
We propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer.<n> Experimental results on the multi-hop question-answering HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-07-18T02:19:00Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - End-to-End Beam Retrieval for Multi-Hop Question Answering [37.13580394608824]
Multi-hop question answering involves finding multiple relevant passages and step-by-step reasoning to answer complex questions.
Previous retrievers were customized for two-hop questions, and most of them were trained separately across different hops.
We introduce Beam Retrieval, an end-to-end beam retrieval framework for multi-hop QA.
arXiv Detail & Related papers (2023-08-17T13:24:14Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a question.
This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer.
In this paper, we introduce JPR, a joint passage retrieval model focusing on reranking. To model the joint probability of the retrieved passages, JPR makes use of an autoregressive reranker that selects a sequence of passages, equipped with novel training and decoding algorithms.
arXiv Detail & Related papers (2021-04-17T04:48:36Z) - Memory Augmented Sequential Paragraph Retrieval for Multi-hop Question
Answering [32.69969157825044]
We propose a new architecture that models paragraphs as sequential data and considers multi-hop information retrieval as a kind of sequence labeling task.
We evaluate our method on both full wiki and distractor subtask of HotpotQA, a public textual multi-hop QA dataset.
arXiv Detail & Related papers (2021-02-07T08:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.