Balanced Image Stylization with Style Matching Score
- URL: http://arxiv.org/abs/2503.07601v1
- Date: Mon, 10 Mar 2025 17:58:02 GMT
- Title: Balanced Image Stylization with Style Matching Score
- Authors: Yuxin Jiang, Liming Jiang, Shuai Yang, Jia-Wei Liu, Ivor Tsang, Mike Zheng Shou,
- Abstract summary: Style Matching Score (SMS) is a novel optimization method for image stylization with diffusion models.<n>SMS balances style alignment and content preservation, outperforming state-of-the-art approaches.
- Score: 36.542802101359705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Style Matching Score (SMS), a novel optimization method for image stylization with diffusion models. Balancing effective style transfer with content preservation is a long-standing challenge. Unlike existing efforts, our method reframes image stylization as a style distribution matching problem. The target style distribution is estimated from off-the-shelf style-dependent LoRAs via carefully designed score functions. To preserve content information adaptively, we propose Progressive Spectrum Regularization, which operates in the frequency domain to guide stylization progressively from low-frequency layouts to high-frequency details. In addition, we devise a Semantic-Aware Gradient Refinement technique that leverages relevance maps derived from diffusion semantic priors to selectively stylize semantically important regions. The proposed optimization formulation extends stylization from pixel space to parameter space, readily applicable to lightweight feedforward generators for efficient one-step stylization. SMS effectively balances style alignment and content preservation, outperforming state-of-the-art approaches, verified by extensive experiments.
Related papers
- AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models [4.364797586362505]
AttenST is a training-free attention-driven style transfer framework.<n>We propose a style-guided self-attention mechanism that conditions self-attention on the reference style.<n>We also introduce a dual-feature cross-attention mechanism to fuse content and style features.
arXiv Detail & Related papers (2025-03-10T13:28:36Z) - Z-STAR+: A Zero-shot Style Transfer Method via Adjusting Style Distribution [24.88532732093652]
Style transfer presents a significant challenge, primarily centered on identifying an appropriate style representation.<n>In contrast to existing approaches, we have discovered that latent features in vanilla diffusion models inherently contain natural style and content distributions.<n>Our method adopts dual denoising paths to represent content and style references in latent space, subsequently guiding the content image denoising process with style latent codes.
arXiv Detail & Related papers (2024-11-28T15:56:17Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - DiffStyler: Diffusion-based Localized Image Style Transfer [0.0]
Image style transfer aims to imbue digital imagery with the distinctive attributes of style targets, such as colors, brushstrokes, shapes.
Despite the advancements in arbitrary style transfer methods, a prevalent challenge remains the delicate equilibrium between content semantics and style attributes.
This paper introduces DiffStyler, a novel approach that facilitates efficient and precise arbitrary image style transfer.
arXiv Detail & Related papers (2024-03-27T11:19:34Z) - HiCAST: Highly Customized Arbitrary Style Transfer with Adapter Enhanced
Diffusion Models [84.12784265734238]
The goal of Arbitrary Style Transfer (AST) is injecting the artistic features of a style reference into a given image/video.
We propose HiCAST, which is capable of explicitly customizing the stylization results according to various source of semantic clues.
A novel learning objective is leveraged for video diffusion model training, which significantly improve cross-frame temporal consistency.
arXiv Detail & Related papers (2024-01-11T12:26:23Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Learning Graph Neural Networks for Image Style Transfer [131.73237185888215]
State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching.
In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization.
arXiv Detail & Related papers (2022-07-24T07:41:31Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
This paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation.
This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer.
arXiv Detail & Related papers (2020-03-17T13:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.