SEAP: Training-free Sparse Expert Activation Pruning Unlock the Brainpower of Large Language Models
- URL: http://arxiv.org/abs/2503.07605v1
- Date: Mon, 10 Mar 2025 17:59:03 GMT
- Title: SEAP: Training-free Sparse Expert Activation Pruning Unlock the Brainpower of Large Language Models
- Authors: Xun Liang, Hanyu Wang, Huayi Lai, Simin Niu, Shichao Song, Jiawei Yang, Jihao Zhao, Feiyu Xiong, Bo Tang, Zhiyu Li,
- Abstract summary: This paper introduces Sparse Expert Activation Pruning (SEAP), a training-free pruning method that selectively retains task-relevant parameters to reduce inference overhead.<n> Experimental results demonstrate that SEAP significantly reduces computational overhead while maintaining competitive accuracy.
- Score: 17.483183039447564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models have achieved remarkable success across various natural language processing tasks, yet their high computational cost during inference remains a major bottleneck. This paper introduces Sparse Expert Activation Pruning (SEAP), a training-free pruning method that selectively retains task-relevant parameters to reduce inference overhead. Inspired by the clustering patterns of hidden states and activations in LLMs, SEAP identifies task-specific expert activation patterns and prunes the model while preserving task performance and enhancing computational efficiency. Experimental results demonstrate that SEAP significantly reduces computational overhead while maintaining competitive accuracy. Notably, at 50% pruning, SEAP surpasses both WandA and FLAP by over 20%, and at 20% pruning, it incurs only a 2.2% performance drop compared to the dense model. These findings highlight SEAP's scalability and effectiveness, making it a promising approach for optimizing large-scale LLMs.
Related papers
- Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
Sparsity-Preserved efficient fine-tuning method for large language models.
Code will be made available at https://github.com/Lucky-Lance/SPP.
arXiv Detail & Related papers (2024-05-25T04:55:27Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with
Module-wise Pruning Error Metric [57.3330687266266]
We find that using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance.
Using the Module-wise Pruning Error (MoPE) metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages.
arXiv Detail & Related papers (2024-03-12T17:24:26Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - Compresso: Structured Pruning with Collaborative Prompting Learns
Compact Large Language Models [15.471290825100075]
We introduce a new paradigm for structurally pruning Large Language Models, called Compresso.
Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process.
In experiments, Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.
arXiv Detail & Related papers (2023-10-08T05:16:28Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
Low-rank adaption (LoRA) has emerged to fine-tune large language models (LLMs)
LoRAPrune is a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner.
LoRAPrune achieves a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.
arXiv Detail & Related papers (2023-05-28T15:15:48Z) - From Dense to Sparse: Contrastive Pruning for Better Pre-trained
Language Model Compression [32.35855458528584]
ContrAstive Pruning (CAP) is designed as a general framework, compatible with both structured and unstructured pruning.
CAP consistently yields significant improvements, especially in extremely high sparsity scenarios.
arXiv Detail & Related papers (2021-12-14T07:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.