Preserving Mass Shell Condition in the Stochastic Optimal Control Derivation of the Dirac Equation
- URL: http://arxiv.org/abs/2503.08110v1
- Date: Tue, 11 Mar 2025 07:21:51 GMT
- Title: Preserving Mass Shell Condition in the Stochastic Optimal Control Derivation of the Dirac Equation
- Authors: Vasil Yordanov,
- Abstract summary: Dirac equation governs spin-$frac12$ particles and their antiparticles.<n>We introduce a novel SOC derivation that retains the nonlinear kinetic term and integrates spin-electromagnetic coupling into the potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Dirac equation, central to relativistic quantum mechanics, governs spin-$\frac{1}{2}$ particles and their antiparticles, with each spinor component satisfying the Klein-Gordon equation - the quantum counterpart of the relativistic mass shell condition. Our prior work [V. Yordanov, Sci. Rep. 14, 6507 (2024)] derived Dirac equation using stochastic optimal control (SOC) theory by linearizing the Lagrangian's kinetic term and the Hamilton-Jacobi-Bellman equation, but failed to preserve the mass shell condition. Here, we introduce a novel SOC derivation that retains the nonlinear kinetic term and integrates spin-electromagnetic coupling into the potential, ensuring relativistic consistency. This approach not only addresses the limitations of the previous model but also deepens the link between stochastic mechanics and quantum theory, offering fresh insights into relativistic quantum phenomena.
Related papers
- Klein-Gordon oscillators and Bergman spaces [55.2480439325792]
We consider classical and quantum dynamics of relativistic oscillator in Minkowski space $mathbbR3,1$.
The general solution of this model is given by functions from the weighted Bergman space of square-integrable holomorphic (for particles) and antiholomorphic functions on the K"ahler-Einstein manifold $Z_6$.
arXiv Detail & Related papers (2024-05-23T09:20:56Z) - Construction of Schrödinger, Pauli and Dirac equations from Vlasov equation in case of Lorentz gauge [0.0]
The authors have succeeded to construct the Schr"odinger, Pauli, Dirac equation, the Hamilton-Jacobi equation and the Maxwell equations.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum mechanics without quantum potentials [0.0]
Non-locality in quantum mechanics can be resolved by considering relativistically covariant diffusion in spacetime.
We introduce the concept of momentum equilinear to replace the second-order Bohm-Newton equations of motion.
arXiv Detail & Related papers (2024-01-08T18:51:38Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Hamiltonian truncation tensor networks for quantum field theories [42.2225785045544]
We introduce a tensor network method for the classical simulation of continuous quantum field theories.
The method is built on Hamiltonian truncation and tensor network techniques.
One of the key developments is the exact construction of matrix product state representations of global projectors.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - A Fisher Information Perspective of Relativistic Quantum Mechanics [0.0]
We show how Schrodinger's equation can be deduced from a fluid dynamical Lagrangian of a charged potential flow.
The quantum behaviour was derived from Fisher information terms which were added to the classical Lagrangian.
arXiv Detail & Related papers (2023-08-01T08:36:30Z) - Quantum master equations for a fast particle in a gas [0.0]
The propagation of a fast particle in a low-density gas at thermal equilibrium is studied in the context of quantum mechanics.
A quantum master equation in the Redfield form governing the reduced density matrix of the particle is derived explicitly from first principles.
arXiv Detail & Related papers (2022-09-05T17:06:03Z) - Asymmetric particle-antiparticle Dirac equation: second quantization [0.0]
We build the fully relativistic quantum field theory related to the asymmetric Dirac fields.
We show that particles and antiparticles sharing the same wave number have different energies and momenta.
We conjecture that this non-degeneracy in the energies for particles and antiparticles may lead to a fully relativistic understanding of the asymmetry between matter and antimatter in the present day universe.
arXiv Detail & Related papers (2022-08-25T17:43:27Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - A Nonlinear Master Equation for Open Quantum Systems [0.0]
A nonlinear master equation is derived, reflecting properly the entropy of open quantum systems.
The corresponding nonlinear equation for the Wigner function accounts rigorously for the thermo-quantum entropy.
arXiv Detail & Related papers (2020-10-12T12:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.