Learning to Detect Objects from Multi-Agent LiDAR Scans without Manual Labels
- URL: http://arxiv.org/abs/2503.08421v2
- Date: Thu, 13 Mar 2025 01:41:04 GMT
- Title: Learning to Detect Objects from Multi-Agent LiDAR Scans without Manual Labels
- Authors: Qiming Xia, Wenkai Lin, Haoen Xiang, Xun Huang, Siheng Chen, Zhen Dong, Cheng Wang, Chenglu Wen,
- Abstract summary: Multi-agent collaborative dataset, which involves the sharing of complementary observations among agents, holds the potential to break through this bottleneck.<n>We introduce a novel unsupervised method that learns to Detect Objects from Multi-Agent LiDAR scans, termed DOtA, without using labels from external.<n>DOtA uses the complementary observations between agents to perform multi-scale encoding on preliminary labels, then decodes high-quality and low-quality labels.
- Score: 40.571133087275406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised 3D object detection serves as an important solution for offline 3D object annotation. However, due to the data sparsity and limited views, the clustering-based label fitting in unsupervised object detection often generates low-quality pseudo-labels. Multi-agent collaborative dataset, which involves the sharing of complementary observations among agents, holds the potential to break through this bottleneck. In this paper, we introduce a novel unsupervised method that learns to Detect Objects from Multi-Agent LiDAR scans, termed DOtA, without using labels from external. DOtA first uses the internally shared ego-pose and ego-shape of collaborative agents to initialize the detector, leveraging the generalization performance of neural networks to infer preliminary labels. Subsequently,DOtA uses the complementary observations between agents to perform multi-scale encoding on preliminary labels, then decodes high-quality and low-quality labels. These labels are further used as prompts to guide a correct feature learning process, thereby enhancing the performance of the unsupervised object detection task. Extensive experiments on the V2V4Real and OPV2V datasets show that our DOtA outperforms state-of-the-art unsupervised 3D object detection methods. Additionally, we also validate the effectiveness of the DOtA labels under various collaborative perception frameworks.The code is available at https://github.com/xmuqimingxia/DOtA.
Related papers
- Vision-Language Guidance for LiDAR-based Unsupervised 3D Object Detection [16.09503890891102]
We propose an unsupervised 3D detection approach that operates exclusively on LiDAR point clouds.
We exploit the inherent CLI-temporal knowledge of LiDAR point clouds for clustering, tracking, as well as boxtext and label refinement.
Our approach outperforms state-of-the-art unsupervised 3D object detectors on the Open dataset.
arXiv Detail & Related papers (2024-08-07T14:14:53Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Move to See Better: Self-Improving Embodied Object Detection [35.461141354989714]
We propose a method for improving object detection in testing environments.
Our agent collects multi-view data, generates 2D and 3D pseudo-labels, and fine-tunes its detector in a self-supervised manner.
arXiv Detail & Related papers (2020-11-30T19:16:51Z) - Unsupervised Object Detection with LiDAR Clues [70.73881791310495]
We present the first practical method for unsupervised object detection with the aid of LiDAR clues.
In our approach, candidate object segments based on 3D point clouds are firstly generated.
Then, an iterative segment labeling process is conducted to assign segment labels and to train a segment labeling network.
The labeling process is carefully designed so as to mitigate the issue of long-tailed and open-ended distribution.
arXiv Detail & Related papers (2020-11-25T18:59:54Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
We present EHSOD, an end-to-end hybrid-supervised object detection system.
It can be trained in one shot on both fully and weakly-annotated data.
It achieves comparable results on multiple object detection benchmarks with only 30% fully-annotated data.
arXiv Detail & Related papers (2020-02-18T08:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.