The Algorithmic State Architecture (ASA): An Integrated Framework for AI-Enabled Government
- URL: http://arxiv.org/abs/2503.08725v2
- Date: Thu, 13 Mar 2025 11:16:38 GMT
- Title: The Algorithmic State Architecture (ASA): An Integrated Framework for AI-Enabled Government
- Authors: Zeynep Engin, Jon Crowcroft, David Hand, Philip Treleaven,
- Abstract summary: This paper introduces the Algorithmic State Architecture (ASA)<n>It conceptualises how Digital Public Infrastructure, Data-for-Policy, Algorithmic Government/Governance, and GovTech interact as an integrated system in AI-enabled states.
- Score: 1.7965567343825297
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificial intelligence transforms public sector operations, governments struggle to integrate technological innovations into coherent systems for effective service delivery. This paper introduces the Algorithmic State Architecture (ASA), a novel four-layer framework conceptualising how Digital Public Infrastructure, Data-for-Policy, Algorithmic Government/Governance, and GovTech interact as an integrated system in AI-enabled states. Unlike approaches that treat these as parallel developments, ASA positions them as interdependent layers with specific enabling relationships and feedback mechanisms. Through comparative analysis of implementations in Estonia, Singapore, India, and the UK, we demonstrate how foundational digital infrastructure enables systematic data collection, which powers algorithmic decision-making processes, ultimately manifesting in user-facing services. Our analysis reveals that successful implementations require balanced development across all layers, with particular attention to integration mechanisms between them. The framework contributes to both theory and practice by bridging previously disconnected domains of digital government research, identifying critical dependencies that influence implementation success, and providing a structured approach for analysing the maturity and development pathways of AI-enabled government systems.
Related papers
- A Blockchain-Enabled Approach to Cross-Border Compliance and Trust [0.0]
This paper proposes a novel approach to AI governance, utilizing blockchain and distributed ledger technologies (DLT)
By synthesizing advancements in blockchain, AI ethics, and cybersecurity, this paper offers a comprehensive roadmap for a decentralized AI governance framework.
arXiv Detail & Related papers (2025-01-15T22:19:34Z) - An AI-Driven Data Mesh Architecture Enhancing Decision-Making in Infrastructure Construction and Public Procurement [1.4843690728082002]
We introduce an integrated software ecosystem utilizing Data Mesh and Service Mesh architectures.<n>This system includes the largest training dataset for infrastructure and procurement, encompassing over 100 billion tokens.<n>Its web-scalable architecture delivers domain-curated information, enabling AI agents to facilitate reasoning and manage uncertainties.
arXiv Detail & Related papers (2024-11-29T19:33:51Z) - Strategic AI Governance: Insights from Leading Nations [0.0]
Artificial Intelligence (AI) has the potential to revolutionize various sectors, yet its adoption is often hindered by concerns about data privacy, security, and the understanding of AI capabilities.
This paper synthesizes AI governance approaches, strategic themes, and enablers and challenges for AI adoption by reviewing national AI strategies from leading nations.
arXiv Detail & Related papers (2024-09-16T06:00:42Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
This paper presents the findings of a literature review on the integration of edge intelligence (EI) and socialized learning (SL)
SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents.
We elaborate on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses.
arXiv Detail & Related papers (2024-04-20T11:07:29Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
Recent advances in artificial intelligence (AI) hold the promise of transforming government.
It is critical that new AI systems behave in alignment with the normative expectations of society.
arXiv Detail & Related papers (2022-10-31T10:57:20Z) - A Framework for Understanding AI-Induced Field Change: How AI
Technologies are Legitimized and Institutionalized [0.0]
This paper presents a conceptual framework to analyze and understand AI-induced field-change.
The introduction of novel AI-agents into new or existing fields creates a dynamic in which algorithms (re)shape organizations and institutions.
The institutional infrastructure surrounding AI-induced fields is generally little elaborated, which could be an obstacle to the broader institutionalization of AI-systems going forward.
arXiv Detail & Related papers (2021-08-18T14:06:08Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.