Contextual Speech Extraction: Leveraging Textual History as an Implicit Cue for Target Speech Extraction
- URL: http://arxiv.org/abs/2503.08798v1
- Date: Tue, 11 Mar 2025 18:26:10 GMT
- Title: Contextual Speech Extraction: Leveraging Textual History as an Implicit Cue for Target Speech Extraction
- Authors: Minsu Kim, Rodrigo Mira, Honglie Chen, Stavros Petridis, Maja Pantic,
- Abstract summary: This paper investigates a novel approach for Target Speech Extraction (TSE)<n>It relies solely on textual context to extract the target speech.<n>We present three CSE models and analyze their performances on three datasets.
- Score: 50.630431647192054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate a novel approach for Target Speech Extraction (TSE), which relies solely on textual context to extract the target speech. We refer to this task as Contextual Speech Extraction (CSE). Unlike traditional TSE methods that rely on pre-recorded enrollment utterances, video of the target speaker's face, spatial information, or other explicit cues to identify the target stream, our proposed method requires only a few turns of previous dialogue (or monologue) history. This approach is naturally feasible in mobile messaging environments where voice recordings are typically preceded by textual dialogue that can be leveraged implicitly. We present three CSE models and analyze their performances on three datasets. Through our experiments, we demonstrate that even when the model relies purely on dialogue history, it can achieve over 90 % accuracy in identifying the correct target stream with only two previous dialogue turns. Furthermore, we show that by leveraging both textual context and enrollment utterances as cues during training, we further enhance our model's flexibility and effectiveness, allowing us to use either cue during inference, or combine both for improved performance. Samples and code available on https://miraodasilva.github.io/cse-project-page .
Related papers
- LAST: Language Model Aware Speech Tokenization [24.185165710384997]
We propose a novel approach to training a speech tokenizer by leveraging objectives from pre-trained textual LMs.
Our aim is to transform features from a pre-trained speech model into a new feature space that enables better clustering for speech LMs.
arXiv Detail & Related papers (2024-09-05T16:57:39Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - VCSE: Time-Domain Visual-Contextual Speaker Extraction Network [54.67547526785552]
We propose a two-stage time-domain visual-contextual speaker extraction network named VCSE.
In the first stage, we pre-extract a target speech with visual cues and estimate the underlying phonetic sequence.
In the second stage, we refine the pre-extracted target speech with the self-enrolled contextual cues.
arXiv Detail & Related papers (2022-10-09T12:29:38Z) - ESSumm: Extractive Speech Summarization from Untranscribed Meeting [7.309214379395552]
We propose a novel architecture for direct extractive speech-to-speech summarization, ESSumm.
We leverage the off-the-shelf self-supervised convolutional neural network to extract the deep speech features from raw audio.
Our approach automatically predicts the optimal sequence of speech segments that capture the key information with a target summary length.
arXiv Detail & Related papers (2022-09-14T20:13:15Z) - SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text
Joint Pre-Training [33.02912456062474]
We build a single encoder with the BERT objective on unlabeled text together with the w2v-BERT objective on unlabeled speech.
We demonstrate that incorporating both speech and text data during pre-training can significantly improve downstream quality on CoVoST2 speech translation.
arXiv Detail & Related papers (2021-10-20T00:59:36Z) - Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration [62.75234183218897]
We propose a one-stage context-aware framework to generate natural and coherent target speech without any training data of the speaker.
We generate the mel-spectrogram of the edited speech with a transformer-based decoder.
It outperforms a recent zero-shot TTS engine by a large margin.
arXiv Detail & Related papers (2021-09-12T04:17:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.