Characterizing Quantum Coherence via Schur-Horn Majorization: Degenerate Distillation and Refined Entropic Uncertainty
- URL: http://arxiv.org/abs/2503.09110v1
- Date: Wed, 12 Mar 2025 06:51:11 GMT
- Title: Characterizing Quantum Coherence via Schur-Horn Majorization: Degenerate Distillation and Refined Entropic Uncertainty
- Authors: Tariq Aziz, Meng-Long Song, Liu Ye, Dong Wang,
- Abstract summary: We introduce a versatile suite of coherence measures that satisfy all resource theoretic axioms under incoherent operations.<n>This unifying approach clarifies the geometric boundaries of physically realizable states in von Neumann-Tsallis entropy space.<n>We strengthen the entropy-based uncertainty relation by refining the Massen-Uffink bound to account for the largest eigenvalues across distinct measurement bases.
- Score: 4.138060581023728
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We develop a rigorous framework for quantifying quantum coherence in finite-dimensional systems by applying the Schur-Horn majorization theorem to relate eigenvalue distributions and diagonal entries of density matrices. Building on this foundation, we introduce a versatile suite of coherence measures, including the relative cross-entropy of coherence and its partial variants, that satisfy all resource theoretic axioms under incoherent operations. This unifying approach clarifies the geometric boundaries of physically realizable states in von Neumann-Tsallis entropy space and uncovers the phenomenon of degenerate coherence distillation where symmetry in the eigenvalue spectrum enables enhanced coherence extraction in higher-dimensional systems. In addition, we strengthen the entropy-based uncertainty relation by refining the Massen-Uffink bound to account for the largest eigenvalues across distinct measurement bases. This refinement forges a deeper connection between entropy and uncertainty, which yields operationally meaningful constraints for quantum information tasks. Altogether, our findings illustrate the power of majorization in resource-theoretic analyses of quantum coherence, which offer valuable tools for both fundamental research and real-world applications in quantum information processing.
Related papers
- Coherent dynamics of flavor mode entangled neutrinos [0.0]
We map the neutrino state as a multi-mode quantum system into qubit and qutrit frameworks.<n>Our findings emphasize the potential of these systems as robust candidates for quantum information tasks.
arXiv Detail & Related papers (2025-01-10T19:23:18Z) - Tightening the entropic uncertainty relations with quantum memory in a multipartite scenario [8.627546022781074]
We introduce a tripartite quantum-memory-assisted entropic uncertainty relation.
We extend the relation to encompass multiple measurements conducted within multipartite systems.
arXiv Detail & Related papers (2025-01-06T09:09:34Z) - Universal Hamming Weight Preserving Variational Quantum Ansatz [48.982717105024385]
Understanding variational quantum ans"atze is crucial for determining quantum advantage in Variational Quantum Eigensolvers (VQEs)<n>This work highlights the critical role of symmetry-preserving ans"atze in VQE research, offering insights that extend beyond supremacy debates.
arXiv Detail & Related papers (2024-12-06T07:42:20Z) - Quantum information in Riemannian spaces [0.0]
This work bridges concepts from information theory, geometry, and quantum physics.<n>It provides a systematic approach to studying quantum information in continuous and curved sample spaces.
arXiv Detail & Related papers (2024-12-04T02:45:05Z) - Fluctuation-Dissipation Theorem and Information Geometry in Open Quantum Systems [2.203892199657599]
We propose a fluctuation-dissipation theorem in open quantum systems from an information-theoretic perspective.
We define the fidelity susceptibility that measures the sensitivity of the systems under perturbation and relate it to the fidelity correlator that characterizes the correlation behaviors for mixed quantum states.
arXiv Detail & Related papers (2024-09-27T17:45:02Z) - Coherence-mixedness trade-offs [2.4940844507983875]
We show that quantum coherence is severely restricted by environmental noise in general quantum processing.
We derive basis-independent constraints on the attainable quantum coherence imposed by the mixedness of a quantum state.
arXiv Detail & Related papers (2024-05-23T09:07:46Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Spectral chaos bounds from scaling theory of maximally efficient quantum-dynamical scrambling [44.99833362998488]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.<n>We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.<n>We establish that scaling predictions are matched by a privileged process and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all time scales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.