Fine-Tuning Large Language Models for Educational Support: Leveraging Gagne's Nine Events of Instruction for Lesson Planning
- URL: http://arxiv.org/abs/2503.09276v1
- Date: Wed, 12 Mar 2025 11:22:13 GMT
- Title: Fine-Tuning Large Language Models for Educational Support: Leveraging Gagne's Nine Events of Instruction for Lesson Planning
- Authors: Linzhao Jia, Changyong Qi, Yuang Wei, Han Sun, Xiaozhe Yang,
- Abstract summary: This study investigates how large language models (LLMs) can enhance teacher preparation by incorporating them with Gagne's Nine Events of Instruction.<n>The research starts with creating a comprehensive dataset based on math curriculum standards and Gagne's instructional events.<n>The second method uses specialized datasets to fine-tune open-source models, enhancing their educational content generation and analysis capabilities.
- Score: 5.022835754140817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective lesson planning is crucial in education process, serving as the cornerstone for high-quality teaching and the cultivation of a conducive learning atmosphere. This study investigates how large language models (LLMs) can enhance teacher preparation by incorporating them with Gagne's Nine Events of Instruction, especially in the field of mathematics education in compulsory education. It investigates two distinct methodologies: the development of Chain of Thought (CoT) prompts to direct LLMs in generating content that aligns with instructional events, and the application of fine-tuning approaches like Low-Rank Adaptation (LoRA) to enhance model performance. This research starts with creating a comprehensive dataset based on math curriculum standards and Gagne's instructional events. The first method involves crafting CoT-optimized prompts to generate detailed, logically coherent responses from LLMs, improving their ability to create educationally relevant content. The second method uses specialized datasets to fine-tune open-source models, enhancing their educational content generation and analysis capabilities. This study contributes to the evolving dialogue on the integration of AI in education, illustrating innovative strategies for leveraging LLMs to bolster teaching and learning processes.
Related papers
- EduPlanner: LLM-Based Multi-Agent Systems for Customized and Intelligent Instructional Design [31.595008625025134]
Large Language Models (LLMs) have significantly advanced smart education in the Artificial General Intelligence (AGI) era.
EduPlanner is an LLM-based multiagent system comprising an evaluator agent, an agent, and a question analyst.
EduPlanner generates customized and intelligent instructional design for curriculum and learning activities.
arXiv Detail & Related papers (2025-04-07T17:49:12Z) - LLM Agents for Education: Advances and Applications [49.3663528354802]
Large Language Model (LLM) agents have demonstrated remarkable capabilities in automating tasks and driving innovation across diverse educational applications.
This survey aims to provide a comprehensive technological overview of LLM agents for education, fostering further research and collaboration to enhance their impact for the greater good of learners and educators alike.
arXiv Detail & Related papers (2025-03-14T11:53:44Z) - LLM Post-Training: A Deep Dive into Reasoning Large Language Models [131.10969986056]
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications.
Post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations.
arXiv Detail & Related papers (2025-02-28T18:59:54Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
We argue that large language models (LLMs) have the potential to serve as effective tutors in foreign language education (FLE)<n> Specifically, LLMs can play three critical roles: (1) as data enhancers, improving the creation of learning materials or serving as student simulations; (2) as task predictors, serving as learner assessment or optimizing learning pathway; and (3) as agents, enabling personalized and inclusive education.
arXiv Detail & Related papers (2025-02-08T06:48:49Z) - Leveraging Large Language Models to Generate Course-specific Semantically Annotated Learning Objects [2.1845291030915974]
Recent progress in generative natural language models has opened up new potential in the generation of educational content.<n>This paper explores the potential of large language models for generating computer science questions that are sufficiently annotated for automatic learner model updates.
arXiv Detail & Related papers (2024-12-05T14:24:07Z) - Advancing Graph Representation Learning with Large Language Models: A
Comprehensive Survey of Techniques [37.60727548905253]
The integration of Large Language Models (LLMs) with Graph Representation Learning (GRL) marks a significant evolution in analyzing complex data structures.
This collaboration harnesses the sophisticated linguistic capabilities of LLMs to improve the contextual understanding and adaptability of graph models.
Despite a growing body of research dedicated to integrating LLMs into the graph domain, a comprehensive review that deeply analyzes the core components and operations is notably lacking.
arXiv Detail & Related papers (2024-02-04T05:51:14Z) - Understanding LLMs: A Comprehensive Overview from Training to Inference [52.70748499554532]
Low-cost training and deployment of large language models represent the future development trend.
Discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning.
On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization.
arXiv Detail & Related papers (2024-01-04T02:43:57Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Instruction Tuning with Human Curriculum [15.025867460765559]
We introduce Curriculum Instruction Tuning, (2) explore the potential advantages of employing diverse curriculum strategies, and (3) delineate a synthetic instruction-response generation framework.
Our generation pipeline is systematically structured to emulate the sequential and orderly characteristic of human learning.
We describe a methodology for generating instruction-response datasets that extensively span the various stages of human education.
arXiv Detail & Related papers (2023-10-14T07:16:08Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
This paper presents an investigation into the use of Large Language Models (LLMs) in asynchronous course creation.
We developed a course prototype leveraging an LLM, implementing a robust human-in-the-loop process.
Initial findings indicate that taking this approach can indeed facilitate faster content creation without compromising on accuracy or clarity.
arXiv Detail & Related papers (2023-06-02T10:58:05Z) - Scaling Evidence-based Instructional Design Expertise through Large
Language Models [0.0]
This paper explores leveraging Large Language Models (LLMs), specifically GPT-4, in the field of instructional design.
With a focus on scaling evidence-based instructional design expertise, our research aims to bridge the gap between theoretical educational studies and practical implementation.
We discuss the benefits and limitations of AI-driven content generation, emphasizing the necessity of human oversight in ensuring the quality of educational materials.
arXiv Detail & Related papers (2023-05-31T17:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.