Revealing the Implicit Noise-based Imprint of Generative Models
- URL: http://arxiv.org/abs/2503.09314v1
- Date: Wed, 12 Mar 2025 12:04:53 GMT
- Title: Revealing the Implicit Noise-based Imprint of Generative Models
- Authors: Xinghan Li, Jingjing Chen, Yue Yu, Xue Song, Haijun Shan, Yu-Gang Jiang,
- Abstract summary: This paper presents a novel framework that leverages noise-based model-specific imprint for the detection task.<n>By aggregating imprints from various generative models, imprints of future models can be extrapolated to expand training data.<n>Our approach achieves state-of-the-art performance across three public benchmarks including GenImage, Synthbuster and Chameleon.
- Score: 71.94916898756684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of vision generation models, the potential security risks stemming from synthetic visual content have garnered increasing attention, posing significant challenges for AI-generated image detection. Existing methods suffer from inadequate generalization capabilities, resulting in unsatisfactory performance on emerging generative models. To address this issue, this paper presents a novel framework that leverages noise-based model-specific imprint for the detection task. Specifically, we propose a novel noise-based imprint simulator to capture intrinsic patterns imprinted in images generated by different models. By aggregating imprints from various generative models, imprints of future models can be extrapolated to expand training data, thereby enhancing generalization and robustness. Furthermore, we design a new pipeline that pioneers the use of noise patterns, derived from a noise-based imprint extractor, alongside other visual features for AI-generated image detection, resulting in a significant improvement in performance. Our approach achieves state-of-the-art performance across three public benchmarks including GenImage, Synthbuster and Chameleon.
Related papers
- HRR: Hierarchical Retrospection Refinement for Generated Image Detection [16.958383381415445]
We propose a diffusion model-based generative image detection framework termed Hierarchical Retrospection Refinement(HRR)<n>The HRR framework consistently delivers significant performance improvements, outperforming state-of-the-art methods in generated image detection task.
arXiv Detail & Related papers (2025-02-25T05:13:44Z) - Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling [25.705179111920806]
This work addresses the question of why and when diffusion models excel at learning high-quality representations in a self-supervised manner.
We develop a mathematical framework based on a low-dimensional data model and posterior estimation, revealing a fundamental trade-off between generation and representation quality near the final stage of image generation.
Building on these insights, we propose an ensemble method that aggregates features across noise levels, significantly improving both clean performance and robustness under label noise.
arXiv Detail & Related papers (2025-02-09T01:58:28Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - One Noise to Rule Them All: Learning a Unified Model of Spatially-Varying Noise Patterns [33.293193191683145]
We present a single generative model which can learn to generate multiple types of noise as well as blend between them.
We also present an application of our model to improving inverse procedural material design.
arXiv Detail & Related papers (2024-04-25T02:23:11Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - Improving Few-shot Image Generation by Structural Discrimination and
Textural Modulation [10.389698647141296]
Few-shot image generation aims to produce plausible and diverse images for one category given a few images from this category.
Existing approaches either globally interpolate different images or fuse local representations with pre-defined coefficients.
This paper proposes a novel mechanism to inject external semantic signals into internal local representations.
arXiv Detail & Related papers (2023-08-30T16:10:21Z) - Model Synthesis for Zero-Shot Model Attribution [26.835046772924258]
generative models are shaping various fields such as art, design, and human-computer interaction.<n>We propose a model synthesis technique, which generates numerous synthetic models mimicking the fingerprint patterns of real-world generative models.<n>Our experiments demonstrate that this fingerprint extractor, trained solely on synthetic models, achieves impressive zero-shot generalization on a wide range of real-world generative models.
arXiv Detail & Related papers (2023-07-29T13:00:42Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.