Group-robust Machine Unlearning
- URL: http://arxiv.org/abs/2503.09330v1
- Date: Wed, 12 Mar 2025 12:24:05 GMT
- Title: Group-robust Machine Unlearning
- Authors: Thomas De Min, Subhankar Roy, Stéphane Lathuilière, Elisa Ricci, Massimiliano Mancini,
- Abstract summary: This work tackles the overlooked problem of non-uniformly distributed forget sets.<n>We present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning.
- Score: 38.36863497458095
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group, we empirically show that performance for this group degrades, leading to fairness issues. This work tackles the overlooked problem of non-uniformly distributed forget sets, which we call group-robust machine unlearning, by presenting a simple, effective strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Data Debiasing with Datamodels (D3M): Improving Subgroup Robustness via Data Selection [80.85902083005237]
We introduce Data Debiasing with Datamodels (D3M), a debiasing approach which isolates and removes specific training examples that drive the model's failures on minority groups.
arXiv Detail & Related papers (2024-06-24T17:51:01Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
We propose a ranking-based training method called Discounted Rank Upweighting (DRU) to learn models that exhibit strong OOD performance on the test data.
Results on several synthetic and real-world datasets highlight the superior ability of our group-ranking-based (akin to soft-minimax) approach in selecting and learning models that are robust to group distributional shifts.
arXiv Detail & Related papers (2023-05-09T20:37:16Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
Existing methods can improve the worst-group performance, but they require group annotations, which are often expensive and sometimes infeasible to obtain.
We address the problem of learning group annotations in the presence of outliers by clustering the data in the space of gradients of the model parameters.
We show that data in the gradient space has a simpler structure while preserving information about minority groups and outliers, making it suitable for standard clustering methods like DBSCAN.
arXiv Detail & Related papers (2022-10-13T06:04:43Z) - Take One Gram of Neural Features, Get Enhanced Group Robustness [23.541213868620837]
Predictive performance of machine learning models trained with empirical risk minimization can degrade considerably under distribution shifts.
We propose to partition the training dataset into groups based on Gram matrices of features extracted by an identification'' model.
Our approach not only improves group robustness over ERM but also outperforms all recent baselines.
arXiv Detail & Related papers (2022-08-26T12:34:55Z) - Causal Scene BERT: Improving object detection by searching for
challenging groups of data [125.40669814080047]
Computer vision applications rely on learning-based perception modules parameterized with neural networks for tasks like object detection.
These modules frequently have low expected error overall but high error on atypical groups of data due to biases inherent in the training process.
Our main contribution is a pseudo-automatic method to discover such groups in foresight by performing causal interventions on simulated scenes.
arXiv Detail & Related papers (2022-02-08T05:14:16Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.