Electromyography-Informed Facial Expression Reconstruction for Physiological-Based Synthesis and Analysis
- URL: http://arxiv.org/abs/2503.09556v1
- Date: Wed, 12 Mar 2025 17:21:10 GMT
- Title: Electromyography-Informed Facial Expression Reconstruction for Physiological-Based Synthesis and Analysis
- Authors: Tim Büchner, Christoph Anders, Orlando Guntinas-Lichius, Joachim Denzler,
- Abstract summary: The relationship between muscle activity and resulting facial expressions is crucial for various fields, including psychology, medicine, and entertainment.<n>Existing methods for facial analysis cannot handle electrode occlusion, rendering them ineffective.<n>Our approach is a novel method to restore faces under sEMG occlusion faithfully in an adversarial manner.<n>We validate the effectiveness of our approach through experiments on a dataset of synchronized sEMG recordings and facial mimicry.
- Score: 6.129164512102711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The relationship between muscle activity and resulting facial expressions is crucial for various fields, including psychology, medicine, and entertainment. The synchronous recording of facial mimicry and muscular activity via surface electromyography (sEMG) provides a unique window into these complex dynamics. Unfortunately, existing methods for facial analysis cannot handle electrode occlusion, rendering them ineffective. Even with occlusion-free reference images of the same person, variations in expression intensity and execution are unmatchable. Our electromyography-informed facial expression reconstruction (EIFER) approach is a novel method to restore faces under sEMG occlusion faithfully in an adversarial manner. We decouple facial geometry and visual appearance (e.g., skin texture, lighting, electrodes) by combining a 3D Morphable Model (3DMM) with neural unpaired image-to-image translation via reference recordings. Then, EIFER learns a bidirectional mapping between 3DMM expression parameters and muscle activity, establishing correspondence between the two domains. We validate the effectiveness of our approach through experiments on a dataset of synchronized sEMG recordings and facial mimicry, demonstrating faithful geometry and appearance reconstruction. Further, we synthesize expressions based on muscle activity and how observed expressions can predict dynamic muscle activity. Consequently, EIFER introduces a new paradigm for facial electromyography, which could be extended to other forms of multi-modal face recordings.
Related papers
- Smile upon the Face but Sadness in the Eyes: Emotion Recognition based on Facial Expressions and Eye Behaviors [63.194053817609024]
We introduce eye behaviors as an important emotional cues for the creation of a new Eye-behavior-aided Multimodal Emotion Recognition dataset.
For the first time, we provide annotations for both Emotion Recognition (ER) and Facial Expression Recognition (FER) in the EMER dataset.
We specifically design a new EMERT architecture to concurrently enhance performance in both ER and FER.
arXiv Detail & Related papers (2024-11-08T04:53:55Z) - BioFace3D: A fully automatic pipeline for facial biomarkers extraction of 3D face reconstructions segmented from MRI [33.7054351451505]
We present BioFace3D as a fully automatic tool for the calculation of facial biomarkers using facial models reconstructed from magnetic resonance images.
The tool is divided into three automatic modules for the extraction of 3D facial models from magnetic resonance images, the registration of anatomical 3D landmarks, and the calculation of facial biomarkers from landmarks coordinates using geometric morphometrics techniques.
arXiv Detail & Related papers (2024-10-01T14:02:58Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
Reconstructing the viewed images from human brain activity bridges human and computer vision through the Brain-Computer Interface.
We devise Psychometry, an omnifit model for reconstructing images from functional Magnetic Resonance Imaging (fMRI) obtained from different subjects.
arXiv Detail & Related papers (2024-03-29T07:16:34Z) - Face-GPS: A Comprehensive Technique for Quantifying Facial Muscle
Dynamics in Videos [0.0]
We introduce a novel method that combines differential geometry, kernels smoothing, and spectral analysis to quantify facial muscle activity.
It has significant potential for applications in national security and plastic surgery.
arXiv Detail & Related papers (2024-01-11T02:32:17Z) - From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos [88.08209394979178]
Dynamic facial expression recognition (DFER) in the wild is still hindered by data limitations.
We introduce a novel Static-to-Dynamic model (S2D) that leverages existing SFER knowledge and dynamic information implicitly encoded in extracted facial landmark-aware features.
arXiv Detail & Related papers (2023-12-09T03:16:09Z) - GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
We introduce a novel Geometry-aware Facial Expression Translation framework, which is based on parametric 3D facial representations and can stably decoupled expression.
We achieve higher-quality and more accurate facial expression transfer results compared to state-of-the-art methods, and demonstrate applicability of various poses and complex textures.
arXiv Detail & Related papers (2023-08-07T09:03:35Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
We propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges.
PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face.
PF-ViT utilizes vanilla Vision Transformers, and its components are pre-trained as Masked Autoencoders on a large facial expression dataset.
arXiv Detail & Related papers (2022-07-22T13:39:06Z) - EMOCA: Emotion Driven Monocular Face Capture and Animation [59.15004328155593]
We introduce a novel deep perceptual emotion consistency loss during training, which helps ensure that the reconstructed 3D expression matches the expression depicted in the input image.
On the task of in-the-wild emotion recognition, our purely geometric approach is on par with the best image-based methods, highlighting the value of 3D geometry in analyzing human behavior.
arXiv Detail & Related papers (2022-04-24T15:58:35Z) - Neuromuscular Control of the Face-Head-Neck Biomechanical Complex With
Learning-Based Expression Transfer From Images and Videos [13.408753449508326]
The transfer of facial expressions from people to 3D face models is a classic computer graphics problem.
We present a novel, learning-based approach to transferring facial expressions to a biomechanical model.
arXiv Detail & Related papers (2021-11-12T01:13:07Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
This paper proposes a novel method for human emotion recognition from a single RGB image.
We construct a large-scale dataset of facial videos, rich in facial dynamics, identities, expressions, appearance and 3D pose variations.
Our proposed framework runs at 50 frames per second and is capable of robustly estimating parameters of 3D expression variation.
arXiv Detail & Related papers (2020-05-12T01:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.