Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models
- URL: http://arxiv.org/abs/2503.09567v2
- Date: Thu, 13 Mar 2025 04:34:15 GMT
- Title: Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models
- Authors: Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao, Wanxiang Che,
- Abstract summary: Long chain-of-thought (Long CoT) characteristics enhance reasoning abilities and enable the solution of intricate problems.<n>We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms.<n>We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and test-time scaling.
- Score: 39.781889862599854
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in reasoning with large language models (RLLMs), such as OpenAI-O1 and DeepSeek-R1, have demonstrated their impressive capabilities in complex domains like mathematics and coding. A central factor in their success lies in the application of long chain-of-thought (Long CoT) characteristics, which enhance reasoning abilities and enable the solution of intricate problems. However, despite these developments, a comprehensive survey on Long CoT is still lacking, limiting our understanding of its distinctions from traditional short chain-of-thought (Short CoT) and complicating ongoing debates on issues like "overthinking" and "test-time scaling." This survey seeks to fill this gap by offering a unified perspective on Long CoT. (1) We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms. (2) Next, we explore the key characteristics of Long CoT: deep reasoning, extensive exploration, and feasible reflection, which enable models to handle more complex tasks and produce more efficient, coherent outcomes compared to the shallower Short CoT. (3) We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and test-time scaling, offering insights into how these processes manifest in practice. (4) Finally, we identify significant research gaps and highlight promising future directions, including the integration of multi-modal reasoning, efficiency improvements, and enhanced knowledge frameworks. By providing a structured overview, this survey aims to inspire future research and further the development of logical reasoning in artificial intelligence.
Related papers
- Efficient Reasoning Models: A Survey [52.96232442322824]
This survey aims to provide a comprehensive overview of recent advances in efficient reasoning.
It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities; and (3) faster.
arXiv Detail & Related papers (2025-04-15T06:28:00Z) - A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond [88.5807076505261]
Large Reasoning Models (LRMs) have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference.
A growing concern lies in their tendency to produce excessively long reasoning traces.
This inefficiency introduces significant challenges for training, inference, and real-world deployment.
arXiv Detail & Related papers (2025-03-27T15:36:30Z) - Can Large Language Models Detect Errors in Long Chain-of-Thought Reasoning? [57.17826305464394]
o1-like models produce the long Chain-of-Thought (CoT) reasoning steps to improve the reasoning abilities of existing Large Language Models (LLMs)<n>We introduce the DeltaBench, including the generated long CoTs from different o1-like models for different reasoning tasks.<n>Based on DeltaBench, we first perform fine-grained analysis of the generated long CoTs to discover the effectiveness and efficiency of different o1-like models.
arXiv Detail & Related papers (2025-02-26T17:59:27Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)<n>However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?<n>In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models [33.13238566815798]
Large Language Models (LLMs) have sparked significant research interest in leveraging them to tackle complex reasoning tasks.<n>Recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can significantly boost reasoning accuracy.<n>The introduction of OpenAI's o1 series marks a significant milestone in this research direction.
arXiv Detail & Related papers (2025-01-16T17:37:58Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models.
We investigate the correlation between the effectiveness of CoT and the length of reasoning steps in prompts.
arXiv Detail & Related papers (2024-01-10T04:37:38Z) - Towards Better Chain-of-Thought Prompting Strategies: A Survey [60.75420407216108]
Chain-of-Thought (CoT) shows its impressive strength when used as a prompting strategy for large language models (LLM)
Recent years, the prominent effect of CoT prompting has attracted emerging research.
This survey could provide an overall reference on related research.
arXiv Detail & Related papers (2023-10-08T01:16:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.