Distributionally Robust Multi-Agent Reinforcement Learning for Dynamic Chute Mapping
- URL: http://arxiv.org/abs/2503.09755v1
- Date: Wed, 12 Mar 2025 18:56:25 GMT
- Title: Distributionally Robust Multi-Agent Reinforcement Learning for Dynamic Chute Mapping
- Authors: Guangyi Liu, Suzan Iloglu, Michael Caldara, Joseph W. Durham, Michael M. Zavlanos,
- Abstract summary: In Amazon robotic warehouses, the destination-to-chute mapping problem is crucial for efficient package sorting.<n>We introduce a Distributionally Robust Multi-Agent Reinforcement Learning framework that learns a destination-to-chute mapping policy that is resilient to adversarial variations in induction rates.<n>We show that DRMARL achieves robust chute mapping in the presence of varying induction distributions, reducing package recirculation by an average of 80% in the simulation scenario.
- Score: 12.78977546421283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Amazon robotic warehouses, the destination-to-chute mapping problem is crucial for efficient package sorting. Often, however, this problem is complicated by uncertain and dynamic package induction rates, which can lead to increased package recirculation. To tackle this challenge, we introduce a Distributionally Robust Multi-Agent Reinforcement Learning (DRMARL) framework that learns a destination-to-chute mapping policy that is resilient to adversarial variations in induction rates. Specifically, DRMARL relies on group distributionally robust optimization (DRO) to learn a policy that performs well not only on average but also on each individual subpopulation of induction rates within the group that capture, for example, different seasonality or operation modes of the system. This approach is then combined with a novel contextual bandit-based predictor of the worst-case induction distribution for each state-action pair, significantly reducing the cost of exploration and thereby increasing the learning efficiency and scalability of our framework. Extensive simulations demonstrate that DRMARL achieves robust chute mapping in the presence of varying induction distributions, reducing package recirculation by an average of 80\% in the simulation scenario.
Related papers
- Distributional Soft Actor-Critic with Diffusion Policy [12.762838783617658]
This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Policy Diffusion) to address the challenges of estimating bias in value functions.<n>The proposed algorithm achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms.
arXiv Detail & Related papers (2025-07-02T05:50:10Z) - Robust Policy Switching for Antifragile Reinforcement Learning for UAV Deconfliction in Adversarial Environments [6.956559003734227]
An unmanned aerial vehicles (UAVs) has been exposed to adversarial attacks that exploit vulnerabilities in reinforcement learning (RL)<n>This paper introduces an antifragile RL framework that enhances adaptability to broader distributional shifts.<n>It achieves superior performance, demonstrating shorter navigation path lengths and a higher rate of conflict-free navigation trajectories.
arXiv Detail & Related papers (2025-06-26T10:06:29Z) - Likelihood Reward Redistribution [0.0]
We propose a emphLikelihood Reward Redistribution (LRR) framework for reward redistribution.
When integrated with an off-policy algorithm such as Soft Actor-Critic, LRR yields dense and informative reward signals.
arXiv Detail & Related papers (2025-03-20T20:50:49Z) - Representation-based Reward Modeling for Efficient Safety Alignment of Large Language Model [84.00480999255628]
Reinforcement Learning algorithms for safety alignment of Large Language Models (LLMs) encounter the challenge of distribution shift.
Current approaches typically address this issue through online sampling from the target policy.
We propose a new framework that leverages the model's intrinsic safety judgment capability to extract reward signals.
arXiv Detail & Related papers (2025-03-13T06:40:34Z) - Distribution-Dependent Rates for Multi-Distribution Learning [26.38831409926518]
Recent multi-distribution learning framework tackles this objective in a dynamic interaction with the environment.
We provide distribution-dependent guarantees in the MDL regime, that scale with suboptimality gaps and result in superior dependence on the sample size.
We devise an adaptive optimistic algorithm, LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between uniform and optimistic allocation in the multi-armed bandit literature.
arXiv Detail & Related papers (2023-12-20T15:50:16Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty.
We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization.
We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk.
arXiv Detail & Related papers (2023-08-30T08:46:46Z) - Attacks on Robust Distributed Learning Schemes via Sensitivity Curve
Maximization [37.464005524259356]
We present a new attack based on sensitivity of curve (SCM)
We demonstrate that it is able to disrupt existing robust aggregation schemes by injecting small but effective perturbations.
arXiv Detail & Related papers (2023-04-27T08:41:57Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
The paper presents a novel Importance Sampling (IS) scheme for estimating distribution of performance measures modeled with a rich set of tools such as linear programs, integer linear programs, piecewise linear/quadratic objectives, feature maps specified with deep neural networks, etc.
arXiv Detail & Related papers (2021-02-14T03:37:22Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.