Channel-wise Noise Scheduled Diffusion for Inverse Rendering in Indoor Scenes
- URL: http://arxiv.org/abs/2503.09993v1
- Date: Thu, 13 Mar 2025 03:04:35 GMT
- Title: Channel-wise Noise Scheduled Diffusion for Inverse Rendering in Indoor Scenes
- Authors: JunYong Choi, Min-Cheol Sagong, SeokYeong Lee, Seung-Won Jung, Ig-Jae Kim, Junghyun Cho,
- Abstract summary: Inverse rendering is inherently ill-posed, making it difficult to predict a single accurate solution.<n>We propose a diffusion-based inverse rendering framework that decomposes a single RGB image into geometry, material, and lighting.
- Score: 18.42978937263707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a diffusion-based inverse rendering framework that decomposes a single RGB image into geometry, material, and lighting. Inverse rendering is inherently ill-posed, making it difficult to predict a single accurate solution. To address this challenge, recent generative model-based methods aim to present a range of possible solutions. However, finding a single accurate solution and generating diverse solutions can be conflicting. In this paper, we propose a channel-wise noise scheduling approach that allows a single diffusion model architecture to achieve two conflicting objectives. The resulting two diffusion models, trained with different channel-wise noise schedules, can predict a single highly accurate solution and present multiple possible solutions. The experimental results demonstrate the superiority of our two models in terms of both diversity and accuracy, which translates to enhanced performance in downstream applications such as object insertion and material editing.
Related papers
- Uni-Renderer: Unifying Rendering and Inverse Rendering Via Dual Stream Diffusion [14.779121995147056]
Rendering and inverse rendering are pivotal tasks in computer vision and graphics.
We propose a data-driven method that jointly models rendering and inverse rendering as two conditional generation tasks.
We will open-source our training and inference code to the public, fostering further research and development in this area.
arXiv Detail & Related papers (2024-12-19T16:57:45Z) - Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.<n>Our method treats the time dimension of a video as the batch dimension image diffusion models.<n>We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems [0.0]
We propose Deep Data Consistency (DDC) to update the data consistency step with a deep learning model when solving inverse problems with diffusion models.
In comparison with state-of-the-art methods in linear and non-linear tasks, DDC demonstrates its outstanding performance of both similarity and realness metrics.
arXiv Detail & Related papers (2024-05-17T12:54:43Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Dynamic Dual-Output Diffusion Models [100.32273175423146]
Iterative denoising-based generation has been shown to be comparable in quality to other classes of generative models.
A major drawback of this method is that it requires hundreds of iterations to produce a competitive result.
Recent works have proposed solutions that allow for faster generation with fewer iterations, but the image quality gradually deteriorates.
arXiv Detail & Related papers (2022-03-08T11:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.