MoEdit: On Learning Quantity Perception for Multi-object Image Editing
- URL: http://arxiv.org/abs/2503.10112v1
- Date: Thu, 13 Mar 2025 07:13:54 GMT
- Title: MoEdit: On Learning Quantity Perception for Multi-object Image Editing
- Authors: Yanfeng Li, Kahou Chan, Yue Sun, Chantong Lam, Tong Tong, Zitong Yu, Keren Fu, Xiaohong Liu, Tao Tan,
- Abstract summary: MoEdit is an auxiliary-free multi-object image editing framework.<n>We present the Feature Compensation (FeCom) module, which ensures the distinction and separability of each object attribute.<n>We also present the Quantity Attention (QTTN) module, which perceives and preserves quantity consistency by effective control in editing.
- Score: 30.569177864762167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-object images are prevalent in various real-world scenarios, including augmented reality, advertisement design, and medical imaging. Efficient and precise editing of these images is critical for these applications. With the advent of Stable Diffusion (SD), high-quality image generation and editing have entered a new era. However, existing methods often struggle to consider each object both individually and part of the whole image editing, both of which are crucial for ensuring consistent quantity perception, resulting in suboptimal perceptual performance. To address these challenges, we propose MoEdit, an auxiliary-free multi-object image editing framework. MoEdit facilitates high-quality multi-object image editing in terms of style transfer, object reinvention, and background regeneration, while ensuring consistent quantity perception between inputs and outputs, even with a large number of objects. To achieve this, we introduce the Feature Compensation (FeCom) module, which ensures the distinction and separability of each object attribute by minimizing the in-between interlacing. Additionally, we present the Quantity Attention (QTTN) module, which perceives and preserves quantity consistency by effective control in editing, without relying on auxiliary tools. By leveraging the SD model, MoEdit enables customized preservation and modification of specific concepts in inputs with high quality. Experimental results demonstrate that our MoEdit achieves State-Of-The-Art (SOTA) performance in multi-object image editing. Data and codes will be available at https://github.com/Tear-kitty/MoEdit.
Related papers
- BrushEdit: All-In-One Image Inpainting and Editing [79.55816192146762]
BrushEdit is a novel inpainting-based instruction-guided image editing paradigm.
We devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model.
Our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics.
arXiv Detail & Related papers (2024-12-13T17:58:06Z) - AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
We present AnyEdit, a comprehensive multi-modal instruction editing dataset.<n>We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results.<n>Experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models.
arXiv Detail & Related papers (2024-11-24T07:02:56Z) - ParallelEdits: Efficient Multi-Aspect Text-Driven Image Editing with Attention Grouping [31.026083872774834]
ParallelEdits is a method that seamlessly manages simultaneous edits across multiple attributes.
PIE-Bench++ dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios.
arXiv Detail & Related papers (2024-06-03T04:43:56Z) - An Item is Worth a Prompt: Versatile Image Editing with Disentangled Control [21.624984690721842]
D-Edit is a framework to disentangle the comprehensive image-prompt interaction into several item-prompt interactions.
It is based on pretrained diffusion models with cross-attention layers disentangled and adopts a two-step optimization to build item-prompt associations.
We demonstrate state-of-the-art results in four types of editing operations including image-based, text-based, mask-based editing, and item removal.
arXiv Detail & Related papers (2024-03-07T20:06:29Z) - LoMOE: Localized Multi-Object Editing via Multi-Diffusion [8.90467024388923]
We introduce a novel framework for zero-shot localized multi-object editing through a multi-diffusion process.
Our approach leverages foreground masks and corresponding simple text prompts that exert localized influences on the target regions.
A combination of cross-attention and background losses within the latent space ensures that the characteristics of the object being edited are preserved.
arXiv Detail & Related papers (2024-03-01T10:46:47Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing.
We train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks.
We show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples.
arXiv Detail & Related papers (2023-11-16T18:55:58Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITS is a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance.
This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture.
arXiv Detail & Related papers (2023-07-02T09:11:09Z) - PAIR-Diffusion: A Comprehensive Multimodal Object-Level Image Editor [135.17302411419834]
PAIR Diffusion is a generic framework that enables a diffusion model to control the structure and appearance of each object in the image.
We show that having control over the properties of each object in an image leads to comprehensive editing capabilities.
Our framework allows for various object-level editing operations on real images such as reference image-based appearance editing, free-form shape editing, adding objects, and variations.
arXiv Detail & Related papers (2023-03-30T17:13:56Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.