Multiplicative Learning
- URL: http://arxiv.org/abs/2503.10144v1
- Date: Thu, 13 Mar 2025 08:14:00 GMT
- Title: Multiplicative Learning
- Authors: Han Kim, Hyungjoon Soh, Vipul Periwal, Junghyo Jo,
- Abstract summary: We introduce Expectation Reflection (ER), a novel learning approach that updates weights multiplicatively based on the ratio of observed to predicted outputs.<n>We extend ER to multilayer networks and demonstrate its effectiveness in performing image classification tasks.
- Score: 0.04499833362998487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient training of artificial neural networks remains a key challenge in deep learning. Backpropagation (BP), the standard learning algorithm, relies on gradient descent and typically requires numerous iterations for convergence. In this study, we introduce Expectation Reflection (ER), a novel learning approach that updates weights multiplicatively based on the ratio of observed to predicted outputs. Unlike traditional methods, ER maintains consistency without requiring ad hoc loss functions or learning rate hyperparameters. We extend ER to multilayer networks and demonstrate its effectiveness in performing image classification tasks. Notably, ER achieves optimal weight updates in a single iteration. Additionally, we reinterpret ER as a modified form of gradient descent incorporating the inverse mapping of target propagation. These findings suggest that ER provides an efficient and scalable alternative for training neural networks.
Related papers
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
Spiking neural networks (SNNs) represent a promising approach in machine learning, combining the hierarchical learning capabilities of deep neural networks with the energy efficiency of spike-based computations.
Traditional end-to-end training of SNNs is often based on back-propagation, where weight updates are derived from gradients computed through the chain rule.
This method encounters challenges due to its limited biological plausibility and inefficiencies on neuromorphic hardware.
In this study, we introduce an alternative training approach for SNNs. Instead of using back-propagation, we leverage weight perturbation methods within a forward-mode
arXiv Detail & Related papers (2024-11-11T15:20:54Z) - One Forward is Enough for Neural Network Training via Likelihood Ratio
Method [47.013384887197454]
Backpropagation (BP) is the mainstream approach for gradient computation in neural network training.
We develop a unified likelihood ratio (ULR) method for estimation with just one forward propagation.
arXiv Detail & Related papers (2023-05-15T19:02:46Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
Spiking neural networks (SNNs) are a viable alternative to conventional artificial neural networks.
We present desire backpropagation, a method to derive the desired spike activity of all neurons, including the hidden ones.
We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively.
arXiv Detail & Related papers (2022-11-10T08:32:13Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Implicit Under-Parameterization Inhibits Data-Efficient Deep
Reinforcement Learning [97.28695683236981]
More gradient updates decrease the expressivity of the current value network.
We demonstrate this phenomenon on Atari and Gym benchmarks, in both offline and online RL settings.
arXiv Detail & Related papers (2020-10-27T17:55:16Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z) - A Deep Unsupervised Feature Learning Spiking Neural Network with
Binarized Classification Layers for EMNIST Classification using SpykeFlow [0.0]
unsupervised learning technique of spike timing dependent plasticity (STDP) using binary activations are used to extract features from spiking input data.
The accuracies obtained for the balanced EMNIST data set compare favorably with other approaches.
arXiv Detail & Related papers (2020-02-26T23:47:35Z) - Semi-Implicit Back Propagation [1.5533842336139065]
We propose a semi-implicit back propagation method for neural network training.
The difference on the neurons are propagated in a backward fashion and the parameters are updated with proximal mapping.
Experiments on both MNIST and CIFAR-10 demonstrate that the proposed algorithm leads to better performance in terms of both loss decreasing and training/validation accuracy.
arXiv Detail & Related papers (2020-02-10T03:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.