Consistent multi-animal pose estimation in cattle using dynamic Kalman filter based tracking
- URL: http://arxiv.org/abs/2503.10450v1
- Date: Thu, 13 Mar 2025 15:15:54 GMT
- Title: Consistent multi-animal pose estimation in cattle using dynamic Kalman filter based tracking
- Authors: Maarten Perneel, Ines Adriaens, Ben Aernouts, Jan Verwaeren,
- Abstract summary: KeySORT is an adaptive Kalman filter to construct tracklets in a bounding-box free manner, significantly improving the temporal consistency of detected keypoints.<n>Our test results indicate our algorithm is able to detect up to 80% of the ground truth keypoints with high accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Over the past decade, studying animal behaviour with the help of computer vision has become more popular. Replacing human observers by computer vision lowers the cost of data collection and therefore allows to collect more extensive datasets. However, the majority of available computer vision algorithms to study animal behaviour is highly tailored towards a single research objective, limiting possibilities for data reuse. In this perspective, pose-estimation in combination with animal tracking offers opportunities to yield a higher level representation capturing both the spatial and temporal component of animal behaviour. Such a higher level representation allows to answer a wide variety of research questions simultaneously, without the need to develop repeatedly tailored computer vision algorithms. In this paper, we therefore first cope with several weaknesses of current pose-estimation algorithms and thereafter introduce KeySORT (Keypoint Simple and Online Realtime Tracking). KeySORT deploys an adaptive Kalman filter to construct tracklets in a bounding-box free manner, significantly improving the temporal consistency of detected keypoints. In this paper, we focus on pose estimation in cattle, but our methodology can easily be generalised to any other animal species. Our test results indicate our algorithm is able to detect up to 80% of the ground truth keypoints with high accuracy, with only a limited drop in performance when daylight recordings are compared to nightvision recordings. Moreover, by using KeySORT to construct skeletons, the temporal consistency of generated keypoint coordinates was largely improved, offering opportunities with regard to automated behaviour monitoring of animals.
Related papers
- Improving Object Detection for Time-Lapse Imagery Using Temporal Features in Wildlife Monitoring [0.5580662655439501]
We show that performance of an object detector in a single frame of a time-lapse sequence can be improved by including-temporal features from the prior frames.<n>We propose a method that leverages temporal information by integrating two additional spatial feature channels which capture stationary and non-stationary elements of the scene.
arXiv Detail & Related papers (2024-12-20T20:37:09Z) - Public Computer Vision Datasets for Precision Livestock Farming: A Systematic Survey [3.3651853492305177]
This study presents the first systematic survey of publicly available livestock CV datasets.
Among 58 public datasets identified and analyzed, almost half of them are for cattle, followed by swine, poultry, and other animals.
Individual animal detection and color imaging are the dominant application and imaging modality for livestock.
arXiv Detail & Related papers (2024-06-15T13:22:41Z) - AnimalFormer: Multimodal Vision Framework for Behavior-based Precision Livestock Farming [0.0]
We introduce a multimodal vision framework for precision livestock farming.
We harness the power of GroundingDINO, HQSAM, and ViTPose models.
This suite enables comprehensive behavioral analytics from video data without invasive animal tagging.
arXiv Detail & Related papers (2024-06-14T04:42:44Z) - Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching [74.75284453828017]
Open-Vocabulary Keypoint Detection (OVKD) task is innovatively designed to use text prompts for identifying arbitrary keypoints across any species.
We have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM)
This framework combines vision and language models, creating an interplay between language features and local keypoint visual features.
arXiv Detail & Related papers (2023-10-08T07:42:41Z) - Improving Out-of-Distribution Generalization of Neural Rerankers with
Contextualized Late Interaction [52.63663547523033]
Late interaction, the simplest form of multi-vector, is also helpful to neural rerankers that only use the [] vector to compute the similarity score.
We show that the finding is consistent across different model sizes and first-stage retrievers of diverse natures.
arXiv Detail & Related papers (2023-02-13T18:42:17Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
We propose an efficient computer vision- and deep learning-based method for the detection of biological behaviours in videos.
TempNet uses an encoder bridge and residual blocks to maintain model performance with a two-staged, spatial, then temporal, encoder.
We demonstrate its application to the detection of sablefish (Anoplopoma fimbria) startle events.
arXiv Detail & Related papers (2022-11-17T23:55:12Z) - SuperAnimal pretrained pose estimation models for behavioral analysis [42.206265576708255]
Quantification of behavior is critical in applications ranging from neuroscience, veterinary medicine and animal conservation efforts.
We present a series of technical innovations that enable a new method, collectively called SuperAnimal, to develop unified foundation models.
arXiv Detail & Related papers (2022-03-14T18:46:57Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
We aim to locate and provide a unique identifier for each mouse in a cluttered home-cage environment through time.
This is a very challenging problem due to (i) the lack of distinguishing visual features for each mouse, and (ii) the close confines of the scene with constant occlusion.
Our approach achieves 77% accuracy on this animal identification problem, and is able to reject spurious detections when the animals are hidden.
arXiv Detail & Related papers (2021-12-13T17:11:32Z) - Livestock Monitoring with Transformer [4.298326853567677]
We develop an end-to-end behaviour monitoring system for group-housed pigs to perform simultaneous instance level segmentation, tracking, action recognition and re-identification tasks.
We present starformer, the first end-to-end multiple-object livestock monitoring framework that learns instance-level embeddings for grouped pigs through the use of transformer architecture.
arXiv Detail & Related papers (2021-11-01T10:03:49Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
We present an extensive dataset of free-running cheetahs in the wild, called AcinoSet.
The dataset contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames.
The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided.
arXiv Detail & Related papers (2021-03-24T15:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.