Extreme Learning Machines for Attention-based Multiple Instance Learning in Whole-Slide Image Classification
- URL: http://arxiv.org/abs/2503.10510v1
- Date: Thu, 13 Mar 2025 16:14:08 GMT
- Title: Extreme Learning Machines for Attention-based Multiple Instance Learning in Whole-Slide Image Classification
- Authors: Rajiv Krishnakumar, Julien Baglio, Frederik F. Flöther, Christian Ruiz, Stefan Habringer, Nicole H. Romano,
- Abstract summary: Whole-slide image classification represents a key challenge in computational pathology and medicine.<n>We introduce a new method using higher-dimensional feature spaces for deep MIL.<n>We apply our algorithms to the problem of detecting circulating rare cells (CRCs) in peripheral blood.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Whole-slide image classification represents a key challenge in computational pathology and medicine. Attention-based multiple instance learning (MIL) has emerged as an effective approach for this problem. However, the effect of attention mechanism architecture on model performance is not well-documented for biomedical imagery. In this work, we compare different methods and implementations of MIL, including deep learning variants. We introduce a new method using higher-dimensional feature spaces for deep MIL. We also develop a novel algorithm for whole-slide image classification where extreme machine learning is combined with attention-based MIL to improve sensitivity and reduce training complexity. We apply our algorithms to the problem of detecting circulating rare cells (CRCs), such as erythroblasts, in peripheral blood. Our results indicate that nonlinearities play a key role in the classification, as removing them leads to a sharp decrease in stability in addition to a decrease in average area under the curve (AUC) of over 4%. We also demonstrate a considerable increase in robustness of the model with improvements of over 10% in average AUC when higher-dimensional feature spaces are leveraged. In addition, we show that extreme learning machines can offer clear improvements in terms of training efficiency by reducing the number of trained parameters by a factor of 5 whilst still maintaining the average AUC to within 1.5% of the deep MIL model. Finally, we discuss options of enriching the classical computing framework with quantum algorithms in the future. This work can thus help pave the way towards more accurate and efficient single-cell diagnostics, one of the building blocks of precision medicine.
Related papers
- RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering [13.423253964156117]
RURANET++ is an unsupervised learning-based automated diagnostic system for Diabetic Macular Edema (DME)<n>During feature processing, a pre-trained GoogLeNet model extracts deep features from retinal images, followed by PCA-based dimensionality reduction to 50 dimensions for computational efficiency.<n> Experimental results demonstrate superior performance across multiple metrics, achieving maximum accuracy (0.8411), precision (0.8593), recall (0.8411), and F1-score, with exceptional clustering quality.
arXiv Detail & Related papers (2025-02-27T16:06:57Z) - Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
We propose a novel approach combining conventional classifiers, segmented images, and CNNs for the automated classification of sickle cell disease.<n>Our results demonstrate that using segmented images and CNN features with an SVM achieves an accuracy of 96.80%.
arXiv Detail & Related papers (2024-12-23T20:42:15Z) - Distilling High Diagnostic Value Patches for Whole Slide Image Classification Using Attention Mechanism [11.920941310806558]
Multiple Instance Learning (MIL) has garnered widespread attention in the field of Whole Slide Image (WSI) classification.
A drawback of bag-level MIL methods is the incorporation of more redundant patches, leading to interference.
We developed an attention-based feature distillation multi-instance learning (AFD-MIL) approach to extract patches with high diagnostic value.
arXiv Detail & Related papers (2024-07-29T09:14:21Z) - Learned Image resizing with efficient training (LRET) facilitates
improved performance of large-scale digital histopathology image
classification models [0.0]
Histologic examination plays a crucial role in oncology research and diagnostics.
Current approaches to training deep convolutional neural networks (DCNN) result in suboptimal model performance.
We introduce a novel approach that addresses the main limitations of traditional histopathology classification model training.
arXiv Detail & Related papers (2024-01-19T23:45:47Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
We propose a novel method to restore the intermediate features for two sparsely sampled and adjacent video frames.
With the integration of our method, the efficiency of three commonly used baselines has been improved by over 50%, with a mere 0.5% reduction in recognition accuracy.
arXiv Detail & Related papers (2023-07-27T13:52:42Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
We will present and discuss opportunities and challenges brought by a new deep learning method by AUC (aka underlinebf Deep underlinebf AUC classification)
arXiv Detail & Related papers (2021-11-01T15:31:32Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
Area under the ROC curve (AUC) is a well-known ranking metric for problems such as imbalanced learning and recommender systems.
In this paper, we start an early trial to consider the problem of learning multiclass scoring functions via optimizing multiclass AUC metrics.
arXiv Detail & Related papers (2021-07-28T05:18:10Z) - Unlocking Pixels for Reinforcement Learning via Implicit Attention [61.666538764049854]
We make use of new efficient attention algorithms, recently shown to be highly effective for Transformers.
This allows our attention-based controllers to scale to larger visual inputs, and facilitate the use of smaller patches.
In addition, we propose a new efficient algorithm approximating softmax attention with what we call hybrid random features.
arXiv Detail & Related papers (2021-02-08T17:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.