Autoregressive Image Generation with Randomized Parallel Decoding
- URL: http://arxiv.org/abs/2503.10568v1
- Date: Thu, 13 Mar 2025 17:19:51 GMT
- Title: Autoregressive Image Generation with Randomized Parallel Decoding
- Authors: Haopeng Li, Jinyue Yang, Guoqi Li, Huan Wang,
- Abstract summary: ARPG is a novel visual autoregressive model that enables randomized parallel generation.<n>Our approach attains an FID of 1.94 with only 64 sampling steps, achieving over a 20-fold increase in throughput.
- Score: 23.714192351237628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce ARPG, a novel visual autoregressive model that enables randomized parallel generation, addressing the inherent limitations of conventional raster-order approaches, which hinder inference efficiency and zero-shot generalization due to their sequential, predefined token generation order. Our key insight is that effective random-order modeling necessitates explicit guidance for determining the position of the next predicted token. To this end, we propose a novel guided decoding framework that decouples positional guidance from content representation, encoding them separately as queries and key-value pairs. By directly incorporating this guidance into the causal attention mechanism, our approach enables fully random-order training and generation, eliminating the need for bidirectional attention. Consequently, ARPG readily generalizes to zero-shot tasks such as image inpainting, outpainting, and resolution expansion. Furthermore, it supports parallel inference by concurrently processing multiple queries using a shared KV cache. On the ImageNet-1K 256 benchmark, our approach attains an FID of 1.94 with only 64 sampling steps, achieving over a 20-fold increase in throughput while reducing memory consumption by over 75% compared to representative recent autoregressive models at a similar scale.
Related papers
- Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models [92.18057318458528]
Token-Shuffle is a novel method that reduces the number of image tokens in Transformer.
Our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis.
In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15.
arXiv Detail & Related papers (2025-04-24T17:59:56Z) - Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation [63.89280381800457]
We propose TokenBridge, which maintains the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens.
We introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism.
Our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction.
arXiv Detail & Related papers (2025-03-20T17:59:59Z) - Improving Autoregressive Image Generation through Coarse-to-Fine Token Prediction [4.900334213807624]
We show how to enjoy the benefits of large codebooks without making autoregressive modeling more difficult.
Our framework consists of two stages: (1) an autoregressive model that sequentially predicts coarse labels for each token in the sequence, and (2) an auxiliary model that simultaneously predicts fine-grained labels for all tokens conditioned on their coarse labels.
arXiv Detail & Related papers (2025-03-20T14:41:29Z) - Robust Latent Matters: Boosting Image Generation with Sampling Error [57.7367843129838]
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer.<n>We propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction.
arXiv Detail & Related papers (2025-03-11T12:09:11Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
We introduce the frequency progressive autoregressive (textbfFAR) paradigm and instantiate FAR with the continuous tokenizer.<n>We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset.
arXiv Detail & Related papers (2025-03-07T10:34:04Z) - FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching [34.112157859384645]
We introduce FlowAR, a next scale prediction method featuring a streamlined scale design.<n>This eliminates the need for VAR's intricate multi-scale residual tokenizer.<n>We validate the effectiveness of FlowAR on the challenging ImageNet-256 benchmark.
arXiv Detail & Related papers (2024-12-19T18:59:31Z) - E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling [17.62612090885471]
ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling) is presented.<n>It operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage.<n>ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10$times$ FLOPs reduction and 5$times$ speedup to generate a 256$times $256 image.
arXiv Detail & Related papers (2024-12-18T18:59:53Z) - Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient [52.96232442322824]
Collaborative Decoding (CoDe) is a novel efficient decoding strategy tailored for the Visual Auto-Regressive ( VAR) framework.<n>CoDe capitalizes on two critical observations: the substantially reduced parameter demands at larger scales and the exclusive generation patterns across different scales.<n>CoDe achieves a 1.7x speedup, slashes memory usage by around 50%, and preserves image quality with only a negligible FID increase from 1.95 to 1.98.
arXiv Detail & Related papers (2024-11-26T15:13:15Z) - Randomized Autoregressive Visual Generation [26.195148077398223]
This paper presents Randomized AutoRegressive modeling (RAR) for visual generation.
RAR sets a new state-of-the-art performance on the image generation task while maintaining full compatibility with language modeling frameworks.
On the ImageNet-256 benchmark, RAR achieves an FID score of 1.48, not only surpassing prior state-the-art autoregressive image generators but also outperforming leading diffusion-based and masked transformer-based methods.
arXiv Detail & Related papers (2024-11-01T17:59:58Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
We propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD)<n>SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding.<n>Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion.
arXiv Detail & Related papers (2024-10-02T16:05:27Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [63.77614880533488]
We propose a parallel decoding sequence-to-sequence vision-language model that marginalizes over multiple inference paths in the decoder.
The model achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time.
arXiv Detail & Related papers (2024-03-04T17:34:59Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.