OCCUQ: Exploring Efficient Uncertainty Quantification for 3D Occupancy Prediction
- URL: http://arxiv.org/abs/2503.10605v1
- Date: Thu, 13 Mar 2025 17:50:07 GMT
- Title: OCCUQ: Exploring Efficient Uncertainty Quantification for 3D Occupancy Prediction
- Authors: Severin Heidrich, Till Beemelmanns, Alexey Nekrasov, Bastian Leibe, Lutz Eckstein,
- Abstract summary: Current methods often overlook uncertainties arising from adversarial conditions or distributional shifts.<n>We propose an efficient adaptation of an uncertainty estimation technique for 3D occupancy prediction.<n>Our approach consistently demonstrates reliable uncertainty measures, indicating its potential for enhancing the robustness of autonomous driving systems.
- Score: 9.742801351723482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving has the potential to significantly enhance productivity and provide numerous societal benefits. Ensuring robustness in these safety-critical systems is essential, particularly when vehicles must navigate adverse weather conditions and sensor corruptions that may not have been encountered during training. Current methods often overlook uncertainties arising from adversarial conditions or distributional shifts, limiting their real-world applicability. We propose an efficient adaptation of an uncertainty estimation technique for 3D occupancy prediction. Our method dynamically calibrates model confidence using epistemic uncertainty estimates. Our evaluation under various camera corruption scenarios, such as fog or missing cameras, demonstrates that our approach effectively quantifies epistemic uncertainty by assigning higher uncertainty values to unseen data. We introduce region-specific corruptions to simulate defects affecting only a single camera and validate our findings through both scene-level and region-level assessments. Our results show superior performance in Out-of-Distribution (OoD) detection and confidence calibration compared to common baselines such as Deep Ensembles and MC-Dropout. Our approach consistently demonstrates reliable uncertainty measures, indicating its potential for enhancing the robustness of autonomous driving systems in real-world scenarios. Code and dataset are available at https://github.com/ika-rwth-aachen/OCCUQ .
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset [23.155946032377052]
We introduce a novel instance-wise calibration method based on an energy model.
Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive consideration of uncertainty.
In experiments, we show that the proposed method consistently maintains robust performance across the spectrum.
arXiv Detail & Related papers (2024-07-17T06:14:55Z) - Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification [8.213390074932132]
This paper evaluates different uncertainty quantification methods from the deep learning domain for the anticipatory testing of safety-critical misbehaviours.<n>We compute uncertainty scores as the vehicle executes, following the intuition that high uncertainty scores are indicative of unsupported runtime conditions.<n>In our study, we conducted an evaluation of the effectiveness and computational overhead associated with two uncertainty quantification methods, namely MC- Dropout and Deep Ensembles, for misbehaviour avoidance.
arXiv Detail & Related papers (2024-04-29T10:28:28Z) - Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection [1.8990839669542954]
We propose a cost-sensitive framework for object detection tailored to user-defined budgets.
We derive minimum thresholding requirements to prevent performance degradation.
We automate and optimize the thresholding process to maximize the failure recognition rate.
arXiv Detail & Related papers (2024-04-26T14:03:55Z) - An Empirical Study of Uncertainty Estimation Techniques for Detecting
Drift in Data Streams [4.818865062632567]
This study conducts a comprehensive empirical evaluation of using uncertainty values as substitutes for error rates in detecting drifts.
We examine five uncertainty estimation methods in conjunction with the ADWIN detector across seven real-world datasets.
Our results reveal that while the SWAG method exhibits superior calibration, the overall accuracy in detecting drifts is not notably impacted by the choice of uncertainty estimation method.
arXiv Detail & Related papers (2023-11-22T13:17:55Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
We present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios.
We consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure.
We propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency.
arXiv Detail & Related papers (2023-03-30T17:59:17Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods.
We show that our methods enable us to deal gracefully with situations of "no-overlap", common in high-dimensional data.
We show that correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations.
arXiv Detail & Related papers (2020-07-01T00:37:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.