NIL: No-data Imitation Learning by Leveraging Pre-trained Video Diffusion Models
- URL: http://arxiv.org/abs/2503.10626v1
- Date: Thu, 13 Mar 2025 17:59:24 GMT
- Title: NIL: No-data Imitation Learning by Leveraging Pre-trained Video Diffusion Models
- Authors: Mert Albaba, Chenhao Li, Markos Diomataris, Omid Taheri, Andreas Krause, Michael Black,
- Abstract summary: We propose a data-independent approach for skill acquisition that learns 3D motor skills from 2D-generated videos.<n>In humanoid robot tasks, we demonstrate that 'No-data Imitation Learning' (NIL) outperforms baselines trained on 3D motion-capture data.
- Score: 36.05972290909729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquiring physically plausible motor skills across diverse and unconventional morphologies-including humanoid robots, quadrupeds, and animals-is essential for advancing character simulation and robotics. Traditional methods, such as reinforcement learning (RL) are task- and body-specific, require extensive reward function engineering, and do not generalize well. Imitation learning offers an alternative but relies heavily on high-quality expert demonstrations, which are difficult to obtain for non-human morphologies. Video diffusion models, on the other hand, are capable of generating realistic videos of various morphologies, from humans to ants. Leveraging this capability, we propose a data-independent approach for skill acquisition that learns 3D motor skills from 2D-generated videos, with generalization capability to unconventional and non-human forms. Specifically, we guide the imitation learning process by leveraging vision transformers for video-based comparisons by calculating pair-wise distance between video embeddings. Along with video-encoding distance, we also use a computed similarity between segmented video frames as a guidance reward. We validate our method on locomotion tasks involving unique body configurations. In humanoid robot locomotion tasks, we demonstrate that 'No-data Imitation Learning' (NIL) outperforms baselines trained on 3D motion-capture data. Our results highlight the potential of leveraging generative video models for physically plausible skill learning with diverse morphologies, effectively replacing data collection with data generation for imitation learning.
Related papers
- VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation [53.63540587160549]
VidBot is a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos.<n> VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
arXiv Detail & Related papers (2025-03-10T10:04:58Z) - VILP: Imitation Learning with Latent Video Planning [19.25411361966752]
This paper introduces imitation learning with latent video planning (VILP)<n>Our method is able to generate highly time-aligned videos from multiple views.<n>Our paper provides a practical example of how to effectively integrate video generation models into robot policies.
arXiv Detail & Related papers (2025-02-03T19:55:57Z) - Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training [69.54948297520612]
Learning a generalist embodied agent poses challenges, primarily stemming from the scarcity of action-labeled robotic datasets.
We introduce a novel framework to tackle these challenges, which leverages a unified discrete diffusion to combine generative pre-training on human videos and policy fine-tuning on a small number of action-labeled robot videos.
Our method generates high-fidelity future videos for planning and enhances the fine-tuned policies compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-02-22T09:48:47Z) - Learning by Watching: A Review of Video-based Learning Approaches for
Robot Manipulation [0.0]
Recent works have explored learning manipulation skills by passively watching abundant videos sourced online.
This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources.
We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation.
arXiv Detail & Related papers (2024-02-11T08:41:42Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - Probabilistic Adaptation of Text-to-Video Models [181.84311524681536]
Video Adapter is capable of incorporating the broad knowledge and preserving the high fidelity of a large pretrained video model in a task-specific small video model.
Video Adapter is able to generate high-quality yet specialized videos on a variety of tasks such as animation, egocentric modeling, and modeling of simulated and real-world robotics data.
arXiv Detail & Related papers (2023-06-02T19:00:17Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses.
Our method outperforms state-of-the-art methods on an in-the-wild human video dataset 3DPW.
arXiv Detail & Related papers (2021-11-29T16:32:41Z) - Creating a Large-scale Synthetic Dataset for Human Activity Recognition [0.8250374560598496]
We use 3D rendering tools to generate a synthetic dataset of videos, and show that a classifier trained on these videos can generalise to real videos.
We fine tune a pre-trained I3D model on our videos, and find that the model is able to achieve a high accuracy of 73% on the HMDB51 dataset over three classes.
arXiv Detail & Related papers (2020-07-21T22:20:21Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.