Measuring Political Preferences in AI Systems: An Integrative Approach
- URL: http://arxiv.org/abs/2503.10649v1
- Date: Tue, 04 Mar 2025 01:40:28 GMT
- Title: Measuring Political Preferences in AI Systems: An Integrative Approach
- Authors: David Rozado,
- Abstract summary: This study employs a multi-method approach to assess political bias in leading AI systems.<n>Results indicate a consistent left-leaning bias across most contemporary AI systems.<n>The presence of systematic political bias in AI systems poses risks, including reduced viewpoint diversity, increased societal polarization, and the potential for public mistrust in AI technologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Political biases in Large Language Model (LLM)-based artificial intelligence (AI) systems, such as OpenAI's ChatGPT or Google's Gemini, have been previously reported. While several prior studies have attempted to quantify these biases using political orientation tests, such approaches are limited by potential tests' calibration biases and constrained response formats that do not reflect real-world human-AI interactions. This study employs a multi-method approach to assess political bias in leading AI systems, integrating four complementary methodologies: (1) linguistic comparison of AI-generated text with the language used by Republican and Democratic U.S. Congress members, (2) analysis of political viewpoints embedded in AI-generated policy recommendations, (3) sentiment analysis of AI-generated text toward politically affiliated public figures, and (4) standardized political orientation testing. Results indicate a consistent left-leaning bias across most contemporary AI systems, with arguably varying degrees of intensity. However, this bias is not an inherent feature of LLMs; prior research demonstrates that fine-tuning with politically skewed data can realign these models across the ideological spectrum. The presence of systematic political bias in AI systems poses risks, including reduced viewpoint diversity, increased societal polarization, and the potential for public mistrust in AI technologies. To mitigate these risks, AI systems should be designed to prioritize factual accuracy while maintaining neutrality on most lawful normative issues. Furthermore, independent monitoring platforms are necessary to ensure transparency, accountability, and responsible AI development.
Related papers
- Political Neutrality in AI is Impossible- But Here is How to Approximate it [97.59456676216115]
We argue that true political neutrality is neither feasible nor universally desirable due to its subjective nature and the biases inherent in AI training data, algorithms, and user interactions.<n>We use the term "approximation" of political neutrality to shift the focus from unattainable absolutes to achievable, practical proxies.
arXiv Detail & Related papers (2025-02-18T16:48:04Z) - Political-LLM: Large Language Models in Political Science [159.95299889946637]
Large language models (LLMs) have been widely adopted in political science tasks.<n>Political-LLM aims to advance the comprehensive understanding of integrating LLMs into computational political science.
arXiv Detail & Related papers (2024-12-09T08:47:50Z) - Biased AI can Influence Political Decision-Making [64.9461133083473]
This paper presents two experiments investigating the effects of partisan bias in AI language models on political decision-making.
We found that participants exposed to politically biased models were significantly more likely to adopt opinions and make decisions aligning with the AI's bias.
arXiv Detail & Related papers (2024-10-08T22:56:00Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - AI Alignment: A Comprehensive Survey [70.35693485015659]
AI alignment aims to make AI systems behave in line with human intentions and values.
We identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality.
We decompose current alignment research into two key components: forward alignment and backward alignment.
arXiv Detail & Related papers (2023-10-30T15:52:15Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
This survey paper offers a succinct, comprehensive overview of fairness and bias in AI.
We review sources of bias, such as data, algorithm, and human decision biases.
We assess the societal impact of biased AI systems, focusing on the perpetuation of inequalities and the reinforcement of harmful stereotypes.
arXiv Detail & Related papers (2023-04-16T03:23:55Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
This essay outlines research on AI that learn structures in policy data that can be leveraged for downstream tasks.
We believe this represents the "comprehension" phase of AI and policy, but leveraging policy as a key source of human values to align AI requires "understanding" policy.
arXiv Detail & Related papers (2022-06-25T21:31:14Z) - Bias in Data-driven AI Systems -- An Introductory Survey [37.34717604783343]
This survey focuses on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful Machine Learning (ML) algorithms.
If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features like race, sex, etc.
arXiv Detail & Related papers (2020-01-14T09:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.