Evaluating Local and Cloud-Based Large Language Models for Simulating Consumer Choices in Energy Stated Preference Surveys
- URL: http://arxiv.org/abs/2503.10652v1
- Date: Fri, 07 Mar 2025 10:37:31 GMT
- Title: Evaluating Local and Cloud-Based Large Language Models for Simulating Consumer Choices in Energy Stated Preference Surveys
- Authors: Han Wang, Jacek Pawlak, Aruna Sivakumar,
- Abstract summary: This study investigates the ability of large language models to simulate consumer choices in energy-related SP surveys.<n>Results indicate that while LLMs achieve an average accuracy of up to 48%, their performance remains insufficient for practical application.<n>Findings suggest that previous SP choices are the most effective input factor, while longer prompts with varied factor formats may reduce accuracy.
- Score: 4.672157041593765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survey research is essential in energy demand studies for capturing consumer preferences and informing policy decisions. Stated preference (SP) surveys, in particular, analyse how individuals make trade-offs in hypothetical scenarios. However, traditional survey methods are costly, time-consuming, and affected by biases and respondent fatigue. Large language models (LLMs) have emerged as a potential tool to address these challenges by generating human-like textual responses. This study investigates the ability of LLMs to simulate consumer choices in energy-related SP surveys. A series of test scenarios evaluated the simulation performance of LLMs at both individual and aggregated levels, considering factors in the prompt, in-context learning (ICL), chain-of-thought (CoT) reasoning, the comparison between local and cloud-based LLMs, integration with traditional choice models, and potential biases. Results indicate that while LLMs achieve an average accuracy of up to 48%, surpassing random guessing, their performance remains insufficient for practical application. Local and cloud-based LLMs perform similarly in simulation accuracy but exhibit differences in adherence to prompt requirements and susceptibility to social desirability biases. Findings suggest that previous SP choices are the most effective input factor, while longer prompts with varied factor formats may reduce accuracy. Furthermore, the traditional mixed logit choice model outperforms LLMs and provides insights for refining LLM prompts. Despite their limitations, LLMs provide scalability and efficiency advantages, requiring minimal historical data compared to traditional survey methods. Future research should refine prompt structures, further investigate CoT reasoning, and explore fine-tuning techniques to improve LLM-based energy survey simulations.
Related papers
- Attention Pruning: Automated Fairness Repair of Language Models via Surrogate Simulated Annealing [14.114970711442512]
This paper introduces Attention Pruning, a fairness-aware simulated annealing approach to prune attention heads in large language models (LLMs)
Our experiments show that Attention Pruning achieves up to $40%$ reduction in gender bias and outperforms the state-of-the-art bias mitigation strategies.
arXiv Detail & Related papers (2025-03-20T03:02:32Z) - Llms, Virtual Users, and Bias: Predicting Any Survey Question Without Human Data [0.0]
We use Large Language Models (LLMs) to create virtual populations that answer survey questions.
We evaluate several LLMs-including GPT-4o, GPT-3.5, Claude 3.5-Sonnet, and versions of the Llama and Mistral models-comparing their performance to that of a traditional Random Forests algorithm.
arXiv Detail & Related papers (2025-03-11T16:27:20Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.
We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Specializing Large Language Models to Simulate Survey Response Distributions for Global Populations [49.908708778200115]
We are the first to specialize large language models (LLMs) for simulating survey response distributions.<n>As a testbed, we use country-level results from two global cultural surveys.<n>We devise a fine-tuning method based on first-token probabilities to minimize divergence between predicted and actual response distributions.
arXiv Detail & Related papers (2025-02-10T21:59:27Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.
In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - LLM-Mirror: A Generated-Persona Approach for Survey Pre-Testing [0.0]
We investigate whether providing respondents' prior information can replicate both statistical distributions and individual decision-making patterns.<n>We also introduce the concept of the LLM-Mirror, user personas generated by supplying respondent-specific information to the LLM.<n>Our findings show that: (1) PLS-SEM analysis shows LLM-generated responses align with human responses, (2) LLMs are capable of reproducing individual human responses, and (3) LLM-Mirror responses closely follow human responses at the individual level.
arXiv Detail & Related papers (2024-12-04T09:39:56Z) - AutoElicit: Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
We introduce AutoElicit to extract knowledge from large language models and construct priors for predictive models.<n>We show these priors are informative and can be refined using natural language.<n>We find that AutoElicit yields priors that can substantially reduce error over uninformative priors, using fewer labels, and consistently outperform in-context learning.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Are Large Language Models Chameleons? An Attempt to Simulate Social Surveys [1.5727456947901746]
We conducted millions of simulations in which large language models (LLMs) were asked to answer subjective questions.
A comparison of different LLM responses with the European Social Survey (ESS) data suggests that the effect of prompts on bias and variability is fundamental.
arXiv Detail & Related papers (2024-05-29T17:54:22Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.