Evaluating a Novel Neuroevolution and Neural Architecture Search System
- URL: http://arxiv.org/abs/2503.10869v1
- Date: Thu, 13 Mar 2025 20:35:34 GMT
- Title: Evaluating a Novel Neuroevolution and Neural Architecture Search System
- Authors: Benjamin David Winter, William John Teahan,
- Abstract summary: We show the effectiveness of Neuvo NAS+ a novel Python implementation of an extended Neural Architecture Search (NAS+)<n>We describe the design of the Neuvo NAS+ system that selects network features on a task-specific basis.<n>Results show that the Neuvo NAS+ approach significantly outperforms several machine learning approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The choice of neural network features can have a large impact on both the accuracy and speed of the network. Despite the current industry shift towards large transformer models, specialized binary classifiers remain critical for numerous practical applications where computational efficiency and low latency are essential. Neural network features tend to be developed homogeneously, resulting in slower or less accurate networks when testing against multiple datasets. In this paper, we show the effectiveness of Neuvo NAS+ a novel Python implementation of an extended Neural Architecture Search (NAS+) which allows the user to optimise the training parameters of a network as well as the network's architecture. We provide an in-depth analysis of the importance of catering a network's architecture to each dataset. We also describe the design of the Neuvo NAS+ system that selects network features on a task-specific basis including network training hyper-parameters such as the number of epochs and batch size. Results show that the Neuvo NAS+ task-specific approach significantly outperforms several machine learning approaches such as Naive Bayes, C4.5, Support Vector Machine and a standard Artificial Neural Network for solving a range of binary classification problems in terms of accuracy. Our experiments demonstrate substantial diversity in evolved network architectures across different datasets, confirming the value of task-specific optimization. Additionally, Neuvo NAS+ outperforms other evolutionary algorithm optimisers in terms of both accuracy and computational efficiency, showing that properly optimized binary classifiers can match or exceed the performance of more complex models while requiring significantly fewer computational resources.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Simultaneous Weight and Architecture Optimization for Neural Networks [6.2241272327831485]
We introduce a novel neural network training framework that transforms the process by learning architecture and parameters simultaneously with gradient descent.
Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other.
Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
arXiv Detail & Related papers (2024-10-10T19:57:36Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.<n>Our approach is capable of encoding neural networks in a model zoo of mixed architecture.<n>We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Max and Coincidence Neurons in Neural Networks [0.07614628596146598]
We optimize networks containing models of the max and coincidence neurons using neural architecture search.
We analyze the structure, operations, and neurons of optimized networks to develop a signal-processing ResNet.
The developed network achieves an average of 2% improvement in accuracy and a 25% improvement in network size across a variety of datasets.
arXiv Detail & Related papers (2021-10-04T07:13:50Z) - Evolutionary Neural Architecture Search Supporting Approximate
Multipliers [0.5414308305392761]
We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN)
The most suitable approximate multipliers are automatically selected from a library of approximate multipliers.
Evolved CNNs are compared with common human-created CNNs of a similar complexity on the CIFAR-10 benchmark problem.
arXiv Detail & Related papers (2021-01-28T09:26:03Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
We study the relationships between a CNN's architecture and its performance.
We show that the attributes can be predictive of the networks' performance in two specific computer vision-based physics problems.
We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training.
arXiv Detail & Related papers (2020-01-07T16:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.