Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
- URL: http://arxiv.org/abs/2503.11167v1
- Date: Fri, 14 Mar 2025 08:12:28 GMT
- Title: Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
- Authors: Haonan Wang, Qixiang Zhang, Lehan Wang, Xuanqi Huang, Xiaomeng Li,
- Abstract summary: NEURONS is a concept framework that decouples learning into four correlated sub-tasks.<n>It simulates the visual cortex's functional specialization, allowing the model to capture diverse video content.<n>NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications.
- Score: 13.110669865114533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decoding visual stimuli from neural activity is essential for understanding the human brain. While fMRI methods have successfully reconstructed static images, fMRI-to-video reconstruction faces challenges due to the need for capturing spatiotemporal dynamics like motion and scene transitions. Recent approaches have improved semantic and perceptual alignment but struggle to integrate coarse fMRI data with detailed visual features. Inspired by the hierarchical organization of the visual system, we propose NEURONS, a novel framework that decouples learning into four correlated sub-tasks: key object segmentation, concept recognition, scene description, and blurry video reconstruction. This approach simulates the visual cortex's functional specialization, allowing the model to capture diverse video content. In the inference stage, NEURONS generates robust conditioning signals for a pre-trained text-to-video diffusion model to reconstruct the videos. Extensive experiments demonstrate that NEURONS outperforms state-of-the-art baselines, achieving solid improvements in video consistency (26.6%) and semantic-level accuracy (19.1%). Notably, NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications. Code and model weights will be available at: https://github.com/xmed-lab/NEURONS.
Related papers
- DecoFuse: Decomposing and Fusing the "What", "Where", and "How" for Brain-Inspired fMRI-to-Video Decoding [82.91021399231184]
Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information.
We propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals.
It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video.
arXiv Detail & Related papers (2025-04-01T05:28:37Z) - NeuroClips: Towards High-fidelity and Smooth fMRI-to-Video Reconstruction [29.030311713701295]
We propose NeuroClips, an innovative framework to decode high-fidelity and smooth video from fMRI.<n>NeuroClips utilizes a semanticsor to reconstruct videos, guiding semantic accuracy and consistency, and employs a perception reconstructor to capture low-level perceptual details.<n>NeuroClips achieves smooth high-fidelity video reconstruction of up to 6s at 8FPS, gaining significant improvements over state-of-the-art models in various metrics.
arXiv Detail & Related papers (2024-10-25T10:28:26Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity [13.04953215936574]
We propose a two-stage model named Mind-Animator to reconstruct human dynamic vision from brain activity.<n>During the fMRI-to-feature stage, we decouple semantic, structure, and motion features from fMRI.<n>In the feature-to-video stage, these features are integrated into videos using an inflated Stable Diffusion.
arXiv Detail & Related papers (2024-05-06T08:56:41Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
We introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data.
tested on a publicly available fMRI dataset, our method shows promising results.
Our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
arXiv Detail & Related papers (2024-02-02T17:34:25Z) - UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion
Model from Human Brain Activity [2.666777614876322]
We propose UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model from Human Brain Activity.
We transform fMRI voxels into text and image latent for low-level information to generate realistic captions and images.
UniBrain outperforms current methods both qualitatively and quantitatively in terms of image reconstruction and reports image captioning results for the first time on the Natural Scenes dataset.
arXiv Detail & Related papers (2023-08-14T19:49:29Z) - Cinematic Mindscapes: High-quality Video Reconstruction from Brain
Activity [0.0]
We show that Mind-Video can reconstruct high-quality videos of arbitrary frame rates using adversarial guidance.
We also show that our model is biologically plausible and interpretable, reflecting established physiological processes.
arXiv Detail & Related papers (2023-05-19T13:44:25Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.