Performance Analysis of Decentralized Federated Learning Deployments
- URL: http://arxiv.org/abs/2503.11828v1
- Date: Fri, 14 Mar 2025 19:37:13 GMT
- Title: Performance Analysis of Decentralized Federated Learning Deployments
- Authors: Chengyan Jiang, Jiamin Fan, Talal Halabi, Israat Haque,
- Abstract summary: Decentralized Federated Learning (DFL) is introduced to address these challenges.<n>It facilitates direct collaboration among participating devices without relying on a central server.<n>This work explores crucial factors influencing the convergence and generalization capacity of DFL models.
- Score: 1.7249361224827533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of smartphones and smart wearable devices has led to the widespread use of Centralized Federated Learning (CFL) for training powerful machine learning models while preserving data privacy. However, CFL faces limitations due to its overreliance on a central server, which impacts latency and system robustness. Decentralized Federated Learning (DFL) is introduced to address these challenges. It facilitates direct collaboration among participating devices without relying on a central server. Each device can independently connect with other devices and share model parameters. This work explores crucial factors influencing the convergence and generalization capacity of DFL models, emphasizing network topologies, non-IID data distribution, and training strategies. We first derive the convergence rate of different DFL model deployment strategies. Then, we comprehensively analyze various network topologies (e.g., linear, ring, star, and mesh) with different degrees of non-IID data and evaluate them over widely adopted machine learning models (e.g., classical, deep neural networks, and Large Language Models) and real-world datasets. The results reveal that models converge to the optimal one for IID data. However, the convergence rate is inversely proportional to the degree of non-IID data distribution. Our findings will serve as valuable guidelines for designing effective DFL model deployments in practical applications.
Related papers
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized.
We propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy.
arXiv Detail & Related papers (2024-10-31T11:13:47Z) - CDFL: Efficient Federated Human Activity Recognition using Contrastive Learning and Deep Clustering [12.472038137777474]
Human Activity Recognition (HAR) is vital for the automation and intelligent identification of human actions through data from diverse sensors.
Traditional machine learning approaches by aggregating data on a central server and centralized processing are memory-intensive and raise privacy concerns.
This work proposes CDFL, an efficient federated learning framework for image-based HAR.
arXiv Detail & Related papers (2024-07-17T03:17:53Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
An edge server and numerous mobile devices (clients) jointly learn a global model without transporting huge amount of data collected by the mobile devices to the edge server.
The proposed FL approach exploits spatial and temporal correlations between learning updates from different mobile devices scheduled to join STFL in various trainings.
An analytical framework of STFL is proposed and employed to study the learning capability of STFL via its convergence performance.
arXiv Detail & Related papers (2021-10-27T16:46:45Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
Federated learning provides a potential solution to privacy-preserving and secure machine learning.
We propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems.
Our results show that the proposed T-FedAvg is effective in reducing communication costs and can even achieve slightly better performance on non-IID data.
arXiv Detail & Related papers (2020-03-07T11:55:34Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
Federated learning (FL) is emerging as a new paradigm to train machine learning models in distributed systems.
The paper proposes a fully distributed (or server-less) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network.
The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing.
arXiv Detail & Related papers (2019-12-27T15:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.