Niobium Air Bridges as a Low-Loss Component for Superconducting Quantum Hardware
- URL: http://arxiv.org/abs/2503.12076v1
- Date: Sat, 15 Mar 2025 10:36:00 GMT
- Title: Niobium Air Bridges as a Low-Loss Component for Superconducting Quantum Hardware
- Authors: N. Bruckmoser, L. Koch, I. Tsitsilin, M. Grammer, D. Bunch, L. Richard, J. Schirk, F. Wallner, J. Feigl, C. M. F. Schneider, S. Geprägs, V. P. Bader, M. Althammer, L. Södergren, S. Filipp,
- Abstract summary: Scaling up superconducting quantum processors requires a high routing density for readout and control lines.<n>We propose and demonstrate a universal subtractive fabrication process for air bridges based on an aluminum hard mask and niobium as the superconducting film.<n>We fabricate superconducting CPW resonators incorporating multiple niobium air bridges in and across their center conductors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling up superconducting quantum processors requires a high routing density for readout and control lines, relying on low-loss interconnects to maintain design flexibility and device performance. We propose and demonstrate a universal subtractive fabrication process for air bridges based on an aluminum hard mask and niobium as the superconducting film. Using this technology, we fabricate superconducting CPW resonators incorporating multiple niobium air bridges in and across their center conductors. Through rigorous cleaning methods, we achieve mean internal quality factors in the single-photon limit exceeding $Q_{\mathrm{int}} = 8.2 \times 10^6$. Notably, the loss per air bridge remains below the detection threshold of the resonators. Due to the larger superconducting energy gap of niobium compared to conventional aluminum air bridges, our approach enables stable performance at elevated temperatures and magnetic fields, which we experimentally confirm in temperatures up to 3.9 K and in a magnetic field of up to 1.60 T. Additionally, we utilize air bridges to realize low-loss vacuum-gap capacitors and demonstrate their successful integration into transmon qubits by achieving median qubit lifetimes of $T_1 = 51.6 \,\mu\text{s}$.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Tantalum airbridges for scalable superconducting quantum processors [8.824862696425393]
We propose a reliable tantalum airbridges with separate or fully-capped structure fabricated via a novel lift-off method.
The overall adaptability of tantalum airbridges is verified.
The median single-qubit gate fidelity shows a tiny decrease from about 99.95% for the isolated Randomized Benchmarking to 99.94% for the simultaneous one.
arXiv Detail & Related papers (2024-01-07T16:32:31Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits [45.786749852292246]
Niobium offers the benefit of increased operating temperatures and frequencies for superconducting devices.
We revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography.
We characterize devices in the microwave domain, measuring coherence times up to $62mu$s and an average qubit quality factor above $105$.
arXiv Detail & Related papers (2023-06-09T13:26:13Z) - Lower-temperature fabrication of airbridges by grayscale lithography to
increase yield of nanowire transmons in circuit QED quantum processors [0.0]
Quantum hardware uses airbridges to suppress unwanted modes of wave propagation in coplanar-waveguide transmission lines.
Traditional airbridge fabrication produces a curved profile by reflowing resist at elevated temperature prior to metallization.
We employ grayscale lithography in place of reflow to reduce the peak airbridge processing temperature from $200$ to $150circmathrmC$.
arXiv Detail & Related papers (2023-01-10T16:33:20Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Aluminum air bridges for superconducting quantum devices realized using
a single step electron-beam lithography process [0.0]
In superconducting quantum devices, air bridges enable increased circuit complexity and density.
We implement aluminum air bridges using a simple process based on single-step electron-beam gradient exposure.
The resulting bridges have sizes ranging from $20mu m$ to $100mu m$, with a yield exceeding $99%$ for lengths up to $36mu m$.
arXiv Detail & Related papers (2022-06-19T21:33:28Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Superconducting granular aluminum resonators resilient to magnetic
fields up to 1 Tesla [0.0]
Superconducting granular aluminum reaches kinetic sheet inductances in the nH/$square$ range.
Small perpendicular magnetic fields, in the range of 0.5mT, enhance $Q_mathrmi$ by approximately 15%.
arXiv Detail & Related papers (2020-06-09T10:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.