Geometry-Aware Face Reconstruction Under Occluded Scenes
- URL: http://arxiv.org/abs/2503.12492v1
- Date: Sun, 16 Mar 2025 13:01:17 GMT
- Title: Geometry-Aware Face Reconstruction Under Occluded Scenes
- Authors: Dapeng Zhao,
- Abstract summary: Deep learning-based 3D face reconstruction methods have demonstrated promising advancements in terms of quality and efficiency.<n>These techniques face challenges in effectively handling occluded scenes and fail to capture intricate geometric facial details.<n>Inspired by the principles of GANs and bump mapping, we have successfully addressed these issues.
- Score: 0.3626013617212667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning-based 3D face reconstruction methods have demonstrated promising advancements in terms of quality and efficiency. Nevertheless, these techniques face challenges in effectively handling occluded scenes and fail to capture intricate geometric facial details. Inspired by the principles of GANs and bump mapping, we have successfully addressed these issues. Our approach aims to deliver comprehensive 3D facial reconstructions, even in the presence of occlusions.While maintaining the overall shape's robustness, we introduce a mid-level shape refinement to the fundamental structure. Furthermore, we illustrate how our method adeptly extends to generate plausible details for obscured facial regions. We offer numerous examples that showcase the effectiveness of our framework in producing realistic results, where traditional methods often struggle. To substantiate the superior adaptability of our approach, we have conducted extensive experiments in the context of general 3D face reconstruction tasks, serving as concrete evidence of its regulatory prowess compared to manual occlusion removal methods.
Related papers
- Learning Contour-Guided 3D Face Reconstruction with Occlusions [0.3626013617212667]
Deep learning-based 3D face reconstruction methods have demonstrated promising advancements in terms of quality and efficiency.<n>These techniques face challenges in effectively handling occluded scenes and fail to capture intricate geometric facial details.<n>Inspired by the principles of GANs and bump mapping, we have successfully addressed these issues.
arXiv Detail & Related papers (2025-03-16T13:05:38Z) - 3D Face Reconstruction With Geometry Details From a Single Color Image Under Occluded Scenes [4.542616945567623]
3D face reconstruction technology aims to generate a face stereo model naturally and realistically.<n>Previous deep face reconstruction approaches are typically designed to generate convincing textures.<n>By introducing bump mapping, we successfully added mid-level details to coarse 3D faces.
arXiv Detail & Related papers (2024-12-25T15:16:02Z) - Generative Face Parsing Map Guided 3D Face Reconstruction Under Occluded Scenes [4.542616945567623]
A complete face parsing map generation method guided by landmarks is proposed.<n>An excellent anti-occlusion face reconstruction method should ensure the authenticity of the output.
arXiv Detail & Related papers (2024-12-25T14:49:41Z) - A Hierarchical Representation Network for Accurate and Detailed Face
Reconstruction from In-The-Wild Images [15.40230841242637]
We present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image.
Our framework can be extended to a multi-view fashion by considering detail consistency of different views.
Our method outperforms the existing methods in both reconstruction accuracy and visual effects.
arXiv Detail & Related papers (2023-02-28T09:24:36Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z) - Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware
Multi-view Geometry Consistency [40.56510679634943]
We propose a self-supervised training architecture by leveraging the multi-view geometry consistency.
We design three novel loss functions for multi-view consistency, including the pixel consistency loss, the depth consistency loss, and the facial landmark-based epipolar loss.
Our method is accurate and robust, especially under large variations of expressions, poses, and illumination conditions.
arXiv Detail & Related papers (2020-07-24T12:36:09Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
We propose a novel face super-resolution method that explicitly incorporates 3D facial priors which grasp the sharp facial structures.
Our work is the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes.
The proposed 3D priors achieve superior face super-resolution results over the state-of-the-arts.
arXiv Detail & Related papers (2020-07-18T15:26:07Z) - AvatarMe: Realistically Renderable 3D Facial Reconstruction
"in-the-wild" [105.28776215113352]
AvatarMe is the first method that is able to reconstruct photorealistic 3D faces from a single "in-the-wild" image with an increasing level of detail.
It outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2020-03-30T22:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.