Hybrid Learners Do Not Forget: A Brain-Inspired Neuro-Symbolic Approach to Continual Learning
- URL: http://arxiv.org/abs/2503.12635v1
- Date: Sun, 16 Mar 2025 20:09:19 GMT
- Title: Hybrid Learners Do Not Forget: A Brain-Inspired Neuro-Symbolic Approach to Continual Learning
- Authors: Amin Banayeeanzade, Mohammad Rostami,
- Abstract summary: Continual learning is crucial for creating AI agents that can learn and improve themselves autonomously.<n>Inspired by the two distinct systems in the human brain, we propose a Neuro-Symbolic Brain-Inspired Continual Learning framework.
- Score: 20.206972068340843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning is crucial for creating AI agents that can learn and improve themselves autonomously. A primary challenge in continual learning is to learn new tasks without losing previously learned knowledge. Current continual learning methods primarily focus on enabling a neural network with mechanisms that mitigate forgetting effects. Inspired by the two distinct systems in the human brain, System 1 and System 2, we propose a Neuro-Symbolic Brain-Inspired Continual Learning (NeSyBiCL) framework that incorporates two subsystems to solve continual learning: A neural network model responsible for quickly adapting to the most recent task, together with a symbolic reasoner responsible for retaining previously acquired knowledge from previous tasks. Moreover, we design an integration mechanism between these components to facilitate knowledge transfer from the symbolic reasoner to the neural network. We also introduce two compositional continual learning benchmarks and demonstrate that NeSyBiCL is effective and leads to superior performance compared to continual learning methods that merely rely on neural architectures to address forgetting.
Related papers
- Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning [59.35015431695172]
We propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism.
For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios.
arXiv Detail & Related papers (2025-04-20T19:53:13Z) - Brain-inspired continual pre-trained learner via silent synaptic consolidation [2.872028467114491]
Artsy is inspired by the activation mechanisms of silent synapses via spike-timing-dependent plasticity observed in mature brains.
It mimics mature brain dynamics by maintaining memory stability for previously learned knowledge within the pre-trained network.
During inference, artificial silent and functional synapses are utilized to establish precise connections between the pre-trained network and the sub-networks.
arXiv Detail & Related papers (2024-10-08T10:56:19Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Control of synaptic plasticity via the fusion of reinforcement learning
and unsupervised learning in neural networks [0.0]
In cognitive neuroscience, it is widely accepted that synaptic plasticity plays an essential role in our amazing learning capability.
With this inspiration, a new learning rule is proposed via the fusion of reinforcement learning and unsupervised learning.
In the proposed computational model, the nonlinear optimal control theory is used to resemble the error feedback loop systems.
arXiv Detail & Related papers (2023-03-26T12:18:03Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - The least-control principle for learning at equilibrium [65.2998274413952]
We present a new principle for learning equilibrium recurrent neural networks, deep equilibrium models, or meta-learning.
Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
arXiv Detail & Related papers (2022-07-04T11:27:08Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Efficient Architecture Search for Continual Learning [36.998565674813285]
Continual learning with neural networks aims to learn a sequence of tasks well.
It is often confronted with three challenges: (1) overcome the catastrophic forgetting problem, (2) adapt the current network to new tasks, and (3) control its model complexity.
We propose a novel approach named as Continual Learning with Efficient Architecture Search, or CLEAS in short.
arXiv Detail & Related papers (2020-06-07T02:59:29Z) - Triple Memory Networks: a Brain-Inspired Method for Continual Learning [35.40452724755021]
A neural network adjusts its parameters when learning a new task, but then fails to conduct the old tasks well.
The brain has a powerful ability to continually learn new experience without catastrophic interference.
Inspired by such brain strategy, we propose a novel approach named triple memory networks (TMNs) for continual learning.
arXiv Detail & Related papers (2020-03-06T11:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.