FedSDP: Explainable Differential Privacy in Federated Learning via Shapley Values
- URL: http://arxiv.org/abs/2503.12958v1
- Date: Mon, 17 Mar 2025 09:14:19 GMT
- Title: FedSDP: Explainable Differential Privacy in Federated Learning via Shapley Values
- Authors: Yunbo Li, Jiaping Gui, Yue Wu,
- Abstract summary: Federated learning (FL) enables participants to store data locally while collaborating in training, yet it remains vulnerable to privacy attacks.<n>We propose FedSDP, a privacy protection mechanism that guides noise injection based on privacy contribution.
- Score: 3.8717814352718105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) enables participants to store data locally while collaborating in training, yet it remains vulnerable to privacy attacks, such as data reconstruction. Existing differential privacy (DP) technologies inject noise dynamically into the training process to mitigate the impact of excessive noise. However, this dynamic scheduling is often grounded in factors indirectly related to privacy, making it difficult to clearly explain the intricate relationship between dynamic noise adjustments and privacy requirements. To address this issue, we propose FedSDP, a novel and explainable DP-based privacy protection mechanism that guides noise injection based on privacy contribution. Specifically, FedSDP leverages Shapley values to assess the contribution of private attributes to local model training and dynamically adjusts the amount of noise injected accordingly. By providing theoretical insights into the injection of varying scales of noise into local training, FedSDP enhances interpretability. Extensive experiments demonstrate that FedSDP can achieve a superior balance between privacy preservation and model performance, surpassing state-of-the-art (SOTA) solutions.
Related papers
- Forward Learning with Differential Privacy [27.164507868291913]
We propose a blueprivatized forward-learning algorithm, Differential Private Unified Likelihood Ratio (DP-ULR)
Our experiments indicate that DP-ULR achieves competitive performance compared to traditional differential privacy training algorithms based on backpropagation.
arXiv Detail & Related papers (2025-04-01T04:14:53Z) - FedEM: A Privacy-Preserving Framework for Concurrent Utility Preservation in Federated Learning [17.853502904387376]
Federated Learning (FL) enables collaborative training of models across distributed clients without sharing local data, addressing privacy concerns in decentralized systems.<n>We propose Federated Error Minimization (FedEM), a novel algorithm that incorporates controlled perturbations through adaptive noise injection.<n> Experimental results on benchmark datasets demonstrate that FedEM significantly reduces privacy risks and preserves model accuracy, achieving a robust balance between privacy protection and utility preservation.
arXiv Detail & Related papers (2025-03-08T02:48:00Z) - Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing [5.667290129954206]
Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments.
We introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy)
FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds.
arXiv Detail & Related papers (2024-11-02T05:00:44Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
Federated learning (FL) is an efficient collaborative training paradigm with a focus on local privacy.
differential privacy (DP) is a classical approach to capture and ensure the reliability of private protections.
arXiv Detail & Related papers (2024-08-28T08:22:21Z) - Differentially Private Online Federated Learning with Correlated Noise [8.349938538355772]
We introduce a novel differentially private algorithm for online federated learning that employs temporally correlated noise to enhance utility.<n>We demonstrate how the drift errors from local updates can be effectively managed under a quasi-strong convexity condition.
arXiv Detail & Related papers (2024-03-25T08:35:19Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Amplitude-Varying Perturbation for Balancing Privacy and Utility in
Federated Learning [86.08285033925597]
This paper presents a new DP perturbation mechanism with a time-varying noise amplitude to protect the privacy of federated learning.
We derive an online refinement of the series to prevent FL from premature convergence resulting from excessive perturbation noise.
The contribution of the new DP mechanism to the convergence and accuracy of privacy-preserving FL is corroborated, compared to the state-of-the-art Gaussian noise mechanism with a persistent noise amplitude.
arXiv Detail & Related papers (2023-03-07T22:52:40Z) - An Experimental Study on Private Aggregation of Teacher Ensemble
Learning for End-to-End Speech Recognition [51.232523987916636]
Differential privacy (DP) is one data protection avenue to safeguard user information used for training deep models by imposing noisy distortion on privacy data.
In this work, we extend PATE learning to work with dynamic patterns, namely speech, and perform one very first experimental study on ASR to avoid acoustic data leakage.
arXiv Detail & Related papers (2022-10-11T16:55:54Z) - A Shuffling Framework for Local Differential Privacy [40.92785300658643]
ldp deployments are vulnerable to inference attacks as an adversary can link the noisy responses to their identity.
An alternative model, shuffle DP, prevents this by shuffling the noisy responses uniformly at random.
We show that systematic shuffling of the noisy responses can thwart specific inference attacks while retaining some meaningful data learnability.
arXiv Detail & Related papers (2021-06-11T20:36:23Z) - On Dynamic Noise Influence in Differentially Private Learning [102.6791870228147]
Private Gradient Descent (PGD) is a commonly used private learning framework, which noises based on the Differential protocol.
Recent studies show that emphdynamic privacy schedules can improve at the final iteration, yet yet theoreticals of the effectiveness of such schedules remain limited.
This paper provides comprehensive analysis of noise influence in dynamic privacy schedules to answer these critical questions.
arXiv Detail & Related papers (2021-01-19T02:04:00Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.