SparseAlign: A Fully Sparse Framework for Cooperative Object Detection
- URL: http://arxiv.org/abs/2503.12982v1
- Date: Mon, 17 Mar 2025 09:38:53 GMT
- Title: SparseAlign: A Fully Sparse Framework for Cooperative Object Detection
- Authors: Yunshuang Yuan, Yan Xia, Daniel Cremers, Monika Sester,
- Abstract summary: We design a fully sparse framework, SparseAlign, with three key features: an enhanced sparse 3D backbone, a query-based temporal context learning module, and a robust detection head specially tailored for sparse features.<n>Our framework, despite its sparsity, outperforms the state of the art with less communication bandwidth requirements.
- Score: 38.96043178218958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative perception can increase the view field and decrease the occlusion of an ego vehicle, hence improving the perception performance and safety of autonomous driving. Despite the success of previous works on cooperative object detection, they mostly operate on dense Bird's Eye View (BEV) feature maps, which are computationally demanding and can hardly be extended to long-range detection problems. More efficient fully sparse frameworks are rarely explored. In this work, we design a fully sparse framework, SparseAlign, with three key features: an enhanced sparse 3D backbone, a query-based temporal context learning module, and a robust detection head specially tailored for sparse features. Extensive experimental results on both OPV2V and DairV2X datasets show that our framework, despite its sparsity, outperforms the state of the art with less communication bandwidth requirements. In addition, experiments on the OPV2Vt and DairV2Xt datasets for time-aligned cooperative object detection also show a significant performance gain compared to the baseline works.
Related papers
- Which2comm: An Efficient Collaborative Perception Framework for 3D Object Detection [5.195291754828701]
Collaborative perception allows real-time inter-agent information exchange.
limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume.
We propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features.
arXiv Detail & Related papers (2025-03-21T14:24:07Z) - Griffin: Aerial-Ground Cooperative Detection and Tracking Dataset and Benchmark [15.405137983083875]
Aerial-ground cooperation offers a promising solution by integrating UAVs' aerial views with ground vehicles' local observations.<n>This paper presents a comprehensive solution for aerial-ground cooperative 3D perception through three key contributions.
arXiv Detail & Related papers (2025-03-10T07:00:07Z) - fVDB: A Deep-Learning Framework for Sparse, Large-Scale, and High-Performance Spatial Intelligence [50.417261057533786]
fVDB is a novel framework for deep learning on large-scale 3D data.
Our framework is fully integrated with PyTorch enabling interoperability with existing pipelines.
arXiv Detail & Related papers (2024-07-01T20:20:33Z) - DuoSpaceNet: Leveraging Both Bird's-Eye-View and Perspective View Representations for 3D Object Detection [3.526990431236137]
Multi-view camera-only 3D object detection largely follows two primary paradigms: exploiting bird's-eye-view (BEV) representations or focusing on perspective-view (PV) features.
We propose DuoSpaceNet, a novel framework that fully unifies BEV and PV feature spaces within a single detection pipeline for comprehensive 3D perception.
arXiv Detail & Related papers (2024-05-17T07:04:29Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - SiCP: Simultaneous Individual and Cooperative Perception for 3D Object Detection in Connected and Automated Vehicles [18.23919432049492]
Cooperative perception for connected and automated vehicles is traditionally achieved through the fusion of feature maps from two or more vehicles.
This drawback impedes the adoption of cooperative perception as vehicle resources are often insufficient to concurrently employ two perception models.
We present Simultaneous Individual and Cooperative Perception (SiCP), a generic framework that supports a wide range of the state-of-the-art standalone perception backbones.
arXiv Detail & Related papers (2023-12-08T04:12:26Z) - V2X-AHD:Vehicle-to-Everything Cooperation Perception via Asymmetric
Heterogenous Distillation Network [13.248981195106069]
We propose a multi-view vehicle-road cooperation perception system, vehicle-to-everything cooperative perception (V2X-AHD)
The V2X-AHD can effectively improve the accuracy of 3D object detection and reduce the number of network parameters, according to this study.
arXiv Detail & Related papers (2023-10-10T13:12:03Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection [29.530177591608297]
Multi-view 3D object detection is becoming popular in autonomous driving due to its high effectiveness and low cost.
Most of the current state-of-the-art detectors follow the query-based bird's-eye-view (BEV) paradigm.
We propose an Object-Centric query-BEV detector OCBEV, which can carve the temporal and spatial cues of moving targets more effectively.
arXiv Detail & Related papers (2023-06-02T17:59:48Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse
Transformers [36.838065731893735]
CoBEVT is the first generic multi-agent perception framework that can cooperatively generate BEV map predictions.
CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation.
arXiv Detail & Related papers (2022-07-05T17:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.