Real-Time Multi-Object Tracking using YOLOv8 and SORT on a SoC FPGA
- URL: http://arxiv.org/abs/2503.13023v1
- Date: Mon, 17 Mar 2025 10:25:33 GMT
- Title: Real-Time Multi-Object Tracking using YOLOv8 and SORT on a SoC FPGA
- Authors: Michal Danilowicz, Tomasz Kryjak,
- Abstract summary: Multi-object tracking (MOT) is one of the most important problems in computer vision.<n>We propose an embedded MOT system based on a quantized YOLOv8 detector and the SORT (Simple Online Realtime Tracker) tracker.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking (MOT) is one of the most important problems in computer vision and a key component of any vision-based perception system used in advanced autonomous mobile robotics. Therefore, its implementation on low-power and real-time embedded platforms is highly desirable. Modern MOT algorithms should be able to track objects of a given class (e.g. people or vehicles). In addition, the number of objects to be tracked is not known in advance, and they may appear and disappear at any time, as well as be obscured. For these reasons, the most popular and successful approaches have recently been based on the tracking paradigm. Therefore, the presence of a high quality object detector is essential, which in practice accounts for the vast majority of the computational and memory complexity of the whole MOT system. In this paper, we propose an FPGA (Field-Programmable Gate Array) implementation of an embedded MOT system based on a quantized YOLOv8 detector and the SORT (Simple Online Realtime Tracker) tracker. We use a modified version of the FINN framework to utilize external memory for model parameters and to support operations necessary required by YOLOv8. We discuss the evaluation of detection and tracking performance using the COCO and MOT15 datasets, where we achieve 0.21 mAP and 38.9 MOTA respectively. As the computational platform, we use an MPSoC system (Zynq UltraScale+ device from AMD/Xilinx) where the detector is deployed in reprogrammable logic and the tracking algorithm is implemented in the processor system.
Related papers
- RAMOTS: A Real-Time System for Aerial Multi-Object Tracking based on Deep Learning and Big Data Technology [0.0]
Multi-object tracking (MOT) in UAV-based video is challenging due to variations in viewpoint, low resolution, and the presence of small objects.<n>We propose a novel real-time MOT framework that integrates Apache Kafka and Apache Spark for efficient and fault-tolerant video stream processing.
arXiv Detail & Related papers (2025-02-06T03:46:18Z) - HopTrack: A Real-time Multi-Object Tracking System for Embedded Devices [11.615446679072932]
This paper introduces HopTrack, a real-time multi-object tracking system tailored for embedded devices.
Compared with the best high-end GPU modified baseline Byte (Embed), HopTrack achieves a processing speed of up to 39.29 on NVIDIA AGX Xavier.
arXiv Detail & Related papers (2024-11-01T14:13:53Z) - Ego-Motion Aware Target Prediction Module for Robust Multi-Object Tracking [2.7898966850590625]
We introduce a novel KF-based prediction module called Ego-motion Aware Target Prediction (EMAP)
Our proposed method decouples the impact of camera rotational and translational velocity from the object trajectories by reformulating the Kalman Filter.
EMAP remarkably drops the number of identity switches (IDSW) of OC-SORT and Deep OC-SORT by 73% and 21%, respectively.
arXiv Detail & Related papers (2024-04-03T23:24:25Z) - Transformer Network for Multi-Person Tracking and Re-Identification in
Unconstrained Environment [0.6798775532273751]
Multi-object tracking (MOT) has profound applications in a variety of fields, including surveillance, sports analytics, self-driving, and cooperative robotics.
We put forward an integrated MOT method that marries object detection and identity linkage within a singular, end-to-end trainable framework.
Our system leverages a robust memory-temporal memory module that retains extensive historical observations and effectively encodes them using an attention-based aggregator.
arXiv Detail & Related papers (2023-12-19T08:15:22Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking [72.76685780516371]
We present MOTChallenge, a benchmark for single-camera Multiple Object Tracking (MOT)
The benchmark is focused on multiple people tracking, since pedestrians are by far the most studied object in the tracking community.
We provide a categorization of state-of-the-art trackers and a broad error analysis.
arXiv Detail & Related papers (2020-10-15T06:52:16Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z) - Tracking by Instance Detection: A Meta-Learning Approach [99.66119903655711]
We propose a principled three-step approach to build a high-performance tracker.
We build two trackers, named Retina-MAML and FCOS-MAML, based on two modern detectors RetinaNet and FCOS.
Both trackers run in real-time at 40 FPS.
arXiv Detail & Related papers (2020-04-02T05:55:06Z) - MOT20: A benchmark for multi object tracking in crowded scenes [73.92443841487503]
We present our MOT20benchmark, consisting of 8 new sequences depicting very crowded challenging scenes.
The benchmark was presented first at the 4thBMTT MOT Challenge Workshop at the Computer Vision and Pattern Recognition Conference (CVPR)
arXiv Detail & Related papers (2020-03-19T20:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.