Symmetric channel verification for purifying noisy quantum channels
- URL: http://arxiv.org/abs/2503.13114v1
- Date: Mon, 17 Mar 2025 12:37:32 GMT
- Title: Symmetric channel verification for purifying noisy quantum channels
- Authors: Kento Tsubouchi, Yosuke Mitsuhashi, Ryuji Takagi, Nobuyuki Yoshioka,
- Abstract summary: We propose symmetric channel verification (SCV), a channel purification protocol that leverages the symmetry inherent in quantum channels.<n>SCV can detect and correct symmetry-breaking noise in quantum channels.<n>Our protocol is applied to various Hamiltonian simulation circuits and phase estimation circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symmetry inherent in quantum states has been widely used to reduce the effect of noise in quantum error correction and a quantum error mitigation technique known as symmetry verification. However, these symmetry-based techniques exploit symmetry in quantum states rather than quantum channels, limiting their application to cases where the entire circuit shares the same symmetry. In this work, we propose symmetric channel verification (SCV), a channel purification protocol that leverages the symmetry inherent in quantum channels. By introducing different phases to each symmetric subspace and employing a quantum phase estimation-like circuit, SCV can detect and correct symmetry-breaking noise in quantum channels. We further propose a hardware-efficient implementation of SCV at the virtual level, which requires only a single-qubit ancilla and is robust against the noise in the ancilla qubit. Our protocol is applied to various Hamiltonian simulation circuits and phase estimation circuits, resulting in a significant reduction of errors. Furthermore, in setups where only Clifford unitaries can be used for noise purification, which is relevant in the early fault-tolerant regime, we show that SCV under Pauli symmetry represents the optimal purification method.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Noise resilience in adaptive and symmetric monitored quantum circuits [0.0]
We study the fate of the symmetry-protected absorbing state and charge-sharpening transitions in the presence of symmetry-breaking noise.
We find that the net effect of noise results in coherent and incoherent symmetry-breaking effects.
Despite the unavoidable noise in current quantum hardwares, our findings offer an optimistic outlook for observing symmetry-protected phases.
arXiv Detail & Related papers (2024-10-18T18:00:33Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Efficient quantum algorithms for testing symmetries of open quantum
systems [17.55887357254701]
In quantum mechanics, it is possible to eliminate degrees of freedom by leveraging symmetry to identify the possible physical transitions.
Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures.
We develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers.
arXiv Detail & Related papers (2023-09-05T18:05:26Z) - Benchmarking universal quantum gates via channel spectrum [0.0]
Noise remains the major obstacle to scalable quantum computation.
We propose a method to infer the noise properties of the target gate, including process fidelity, fidelity, and some unitary parameters, from the eigenvalues of its noisy channel.
Our method is insensitive to state-preparation and measurement errors, and importantly, can benchmark universal gates and is scalable to many-qubit systems.
arXiv Detail & Related papers (2023-01-05T13:18:19Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Symmetry breaking/symmetry preserving circuits and symmetry restoration
on quantum computers: A quantum many-body perspective [0.0]
We discuss some aspects related to the symmetries of a quantum many-body problem when trying to treat it on a quantum computer.
Several features related to symmetry conservation, symmetry breaking, and possible symmetry restoration are reviewed.
arXiv Detail & Related papers (2022-08-24T14:19:13Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Quantum algorithms with local particle number conservation: noise
effects and error correction [11.659279774157255]
Quantum circuits with local particle number conservation restrict quantum computation to a subspace of the Hilbert space of the qubit register.
In the presence of noise, however, the evolution's symmetry could be broken and non-valid states could be sampled at the end of the computation.
We analyze the probability of staying in such symmetry-preserved subspaces under noise, providing an exact formula for local depolarizing noise.
arXiv Detail & Related papers (2020-11-13T11:57:32Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.