Agents Play Thousands of 3D Video Games
- URL: http://arxiv.org/abs/2503.13356v1
- Date: Mon, 17 Mar 2025 16:42:34 GMT
- Title: Agents Play Thousands of 3D Video Games
- Authors: Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu, Wei Yang,
- Abstract summary: We present PORTAL, a novel framework for developing artificial intelligence agents capable of playing thousands of 3D video games.<n>By transforming decision-making problems into language modeling tasks, our approach leverages large language models (LLMs) to generate behavior trees.<n>Our framework introduces a hybrid policy structure that combines rule-based nodes with neural network components, enabling both high-level strategic reasoning and precise low-level control.
- Score: 26.290863972751428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present PORTAL, a novel framework for developing artificial intelligence agents capable of playing thousands of 3D video games through language-guided policy generation. By transforming decision-making problems into language modeling tasks, our approach leverages large language models (LLMs) to generate behavior trees represented in domain-specific language (DSL). This method eliminates the computational burden associated with traditional reinforcement learning approaches while preserving strategic depth and rapid adaptability. Our framework introduces a hybrid policy structure that combines rule-based nodes with neural network components, enabling both high-level strategic reasoning and precise low-level control. A dual-feedback mechanism incorporating quantitative game metrics and vision-language model analysis facilitates iterative policy improvement at both tactical and strategic levels. The resulting policies are instantaneously deployable, human-interpretable, and capable of generalizing across diverse gaming environments. Experimental results demonstrate PORTAL's effectiveness across thousands of first-person shooter (FPS) games, showcasing significant improvements in development efficiency, policy generalization, and behavior diversity compared to traditional approaches. PORTAL represents a significant advancement in game AI development, offering a practical solution for creating sophisticated agents that can operate across thousands of commercial video games with minimal development overhead. Experiment results on the 3D video games are best viewed on https://zhongwen.one/projects/portal .
Related papers
- Policy Learning with a Language Bottleneck [65.99843627646018]
Policy Learning with a Language Bottleneck (PLLBB) is a framework enabling AI agents to generate linguistic rules.
PLLBB alternates between a rule generation step guided by language models, and an update step where agents learn new policies guided by rules.
In a two-player communication game, a maze solving task, and two image reconstruction tasks, we show thatPLLBB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users.
arXiv Detail & Related papers (2024-05-07T08:40:21Z) - Scaling Instructable Agents Across Many Simulated Worlds [70.97268311053328]
Our goal is to develop an agent that can accomplish anything a human can do in any simulated 3D environment.
Our approach focuses on language-driven generality while imposing minimal assumptions.
Our agents interact with environments in real-time using a generic, human-like interface.
arXiv Detail & Related papers (2024-03-13T17:50:32Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Strategic Reasoning with Language Models [35.63300060111918]
Strategic reasoning enables agents to cooperate, communicate, and compete with other agents in diverse situations.
Existing approaches to solving strategic games rely on extensive training, yielding strategies that do not generalize to new scenarios or games without retraining.
This paper introduces an approach that uses pretrained Large Language Models with few-shot chain-of-thought examples to enable strategic reasoning for AI agents.
arXiv Detail & Related papers (2023-05-30T16:09:19Z) - Knowledge-enhanced Agents for Interactive Text Games [16.055119735473017]
We propose a knowledge-injection framework for improved functional grounding of agents in text-based games.
We consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment.
Our framework supports two representative model classes: reinforcement learning agents and language model agents.
arXiv Detail & Related papers (2023-05-08T23:31:39Z) - Multi-Game Decision Transformers [49.257185338595434]
We show that a single transformer-based model can play a suite of up to 46 Atari games simultaneously at close-to-human performance.
We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning.
We find that our Multi-Game Decision Transformer models offer the best scalability and performance.
arXiv Detail & Related papers (2022-05-30T16:55:38Z) - Generalization in Text-based Games via Hierarchical Reinforcement
Learning [42.70991837415775]
We introduce a hierarchical framework built upon the knowledge graph-based RL agent.
In the high level, a meta-policy is executed to decompose the whole game into a set of subtasks specified by textual goals.
In the low level, a sub-policy is executed to conduct goal-conditioned reinforcement learning.
arXiv Detail & Related papers (2021-09-21T05:27:33Z) - Human-Level Reinforcement Learning through Theory-Based Modeling,
Exploration, and Planning [27.593497502386143]
Theory-Based Reinforcement Learning uses human-like intuitive theories to explore and model an environment.
We instantiate the approach in a video game playing agent called EMPA.
EMPA matches human learning efficiency on a suite of 90 Atari-style video games.
arXiv Detail & Related papers (2021-07-27T01:38:13Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.