Unified Autoregressive Visual Generation and Understanding with Continuous Tokens
- URL: http://arxiv.org/abs/2503.13436v1
- Date: Mon, 17 Mar 2025 17:58:30 GMT
- Title: Unified Autoregressive Visual Generation and Understanding with Continuous Tokens
- Authors: Lijie Fan, Luming Tang, Siyang Qin, Tianhong Li, Xuan Yang, Siyuan Qiao, Andreas Steiner, Chen Sun, Yuanzhen Li, Tao Zhu, Michael Rubinstein, Michalis Raptis, Deqing Sun, Radu Soricut,
- Abstract summary: We present UniFluid, a unified autoregressive framework for joint visual generation and understanding.<n>Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image.<n>We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other.
- Score: 52.21981295470491
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present UniFluid, a unified autoregressive framework for joint visual generation and understanding leveraging continuous visual tokens. Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image. We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other. By selecting an appropriate loss balance weight, the unified model achieves results comparable to or exceeding those of single-task baselines on both tasks. Furthermore, we demonstrate that employing stronger pre-trained LLMs and random-order generation during training is important to achieve high-fidelity image generation within this unified framework. Built upon the Gemma model series, UniFluid exhibits competitive performance across both image generation and understanding, demonstrating strong transferability to various downstream tasks, including image editing for generation, as well as visual captioning and question answering for understanding.
Related papers
- VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning [68.98988753763666]
We propose VisualCloze, a universal image generation framework.
VisualCloze supports a wide range of in-domain tasks, generalization to unseen ones, unseen unification of multiple tasks, and reverse generation.
We introduce Graph200K, a graph-structured dataset that establishes various interrelated tasks, enhancing task density and transferable knowledge.
arXiv Detail & Related papers (2025-04-10T17:59:42Z) - Harmonizing Visual Representations for Unified Multimodal Understanding and Generation [53.01486796503091]
We present emphHarmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder.
Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks.
arXiv Detail & Related papers (2025-03-27T20:50:38Z) - UGen: Unified Autoregressive Multimodal Model with Progressive Vocabulary Learning [24.792798238358717]
UGen is a unified autoregressive multimodal model that demonstrates strong performance across text processing, image understanding, and image generation tasks simultaneously.
To address the challenges associated with unified multimodal learning, UGen is trained using a novel mechanism, namely progressive vocabulary learning.
arXiv Detail & Related papers (2025-03-27T06:19:29Z) - QLIP: Text-Aligned Visual Tokenization Unifies Auto-Regressive Multimodal Understanding and Generation [101.28446308930367]
Quantized Language-Image Pretraining (QLIP) combines state-of-the-art reconstruction quality with state-of-the-art zero-shot image understanding.<n>QLIP trains a binary-spherical-quantization-based autoencoder with reconstruction and language-image alignment objectives.<n>We demonstrate that QLIP enables a unified mixed-modality auto-regressive model for understanding and generation.
arXiv Detail & Related papers (2025-02-07T18:59:57Z) - Masked Generative Story Transformer with Character Guidance and Caption
Augmentation [2.1392064955842023]
Story visualization is a challenging generative vision task, that requires both visual quality and consistency between different frames in generated image sequences.
Previous approaches either employ some kind of memory mechanism to maintain context throughout an auto-regressive generation of the image sequence, or model the generation of the characters and their background separately.
We propose a completely parallel transformer-based approach, relying on Cross-Attention with past and future captions to achieve consistency.
arXiv Detail & Related papers (2024-03-13T13:10:20Z) - Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
instruct-imagen is a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks.
We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision.
Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain.
arXiv Detail & Related papers (2024-01-03T19:31:58Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning.
Recent research has highlighted severe limitations in their ability to perform compositional reasoning over objects, attributes, and relations.
arXiv Detail & Related papers (2023-05-23T08:28:38Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
We present a new framework that takes text-to-image synthesis to the realm of image-to-image translation.
Our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text.
arXiv Detail & Related papers (2022-11-22T20:39:18Z) - FILIP: Fine-grained Interactive Language-Image Pre-Training [106.19474076935363]
Fine-grained Interactive Language-Image Pre-training achieves finer-level alignment through a cross-modal late interaction mechanism.
We construct a new large-scale image-text pair dataset called FILIP300M for pre-training.
Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks.
arXiv Detail & Related papers (2021-11-09T17:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.